一、宏观因素X对微观因素Y影响的Stata模拟
clear//清空当前工作区
set seed 123//设置随机数种子为123,以确保结果可重复
set obs 500//设置数据集大小为500行(观测值)
egen group_id = seq(), from(1) to(100) block(5)
//生成一个名为 “group_id” 的新变量,其中每个分组包含连续的五个观测值。总共有 100 组
gen X = rnormal()//生成一个名为 “X” 的新变量,其中每个观测值都是从标准正态分布中抽取的随机数
egen group_X = mean(X), by(group_id)
//对于每个分组计算 “X” 变量的均值,并将其存储在名为 “group_X” 的新变量中
replace X = group_X//将每个观测值替换为其所属分组的平均值(即实现了固定效应模型)
gen Y = 0.5 * X + rnormal(0, 0.5)
//根据公式 Y=0.5*X+.,在 “X” 变量和误差项中抽取随机数来生成一个名为 “Y” 的新变量。其中误差项服从均值为零、标准差为 0 .5 的正态分布
xtmixed Y X || group_id:, mle
//运行 xt 混合效应模型,其中因变量是 “Y”,自变量是 “X”,并且考虑到了由 “group_id” 定义的随机截距。使用最大似然方法进行参数估计
二、宏观因素X对微观因素Y影响的R模拟
library(lme4) ##加载 lme4 包。lme4 包提供了用于拟合线性混合效应模型的函数
set.seed(123) ##设置随机数生成器的种子为 123。这确保了代码的可重复性
n_groups = 10