构造一个跨层模型(混合效应)的数据并回归 Stata & R

文章通过Stata和R语言分别模拟了宏观因素X如何影响微观因素Y的过程。在Stata中,使用xtmixed命令构建了固定效应模型;在R中,利用lme4包的lmer函数拟合了线性混合效应模型,两者都考虑了由group_id定义的随机截距。模型基于随机数生成,展示了X对Y的线性关系以及随机误差项的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、宏观因素X对微观因素Y影响的Stata模拟

clear//清空当前工作区

set seed 123//设置随机数种子为123,以确保结果可重复

set obs 500//设置数据集大小为500行(观测值)

egen group_id = seq(), from(1) to(100) block(5)
//生成一个名为 “group_id” 的新变量,其中每个分组包含连续的五个观测值。总共有 100 组

gen X = rnormal()//生成一个名为 “X” 的新变量,其中每个观测值都是从标准正态分布中抽取的随机数

egen group_X = mean(X), by(group_id)
//对于每个分组计算 “X” 变量的均值,并将其存储在名为 “group_X” 的新变量中

replace X = group_X//将每个观测值替换为其所属分组的平均值(即实现了固定效应模型)

gen Y = 0.5 * X + rnormal(0, 0.5)
//根据公式 Y=0.5*X+.,在 “X” 变量和误差项中抽取随机数来生成一个名为 “Y” 的新变量。其中误差项服从均值为零、标准差为 0 .5 的正态分布

xtmixed Y X || group_id:, mle
//运行 xt 混合效应模型,其中因变量是 “Y”,自变量是 “X”,并且考虑到了由 “group_id” 定义的随机截距。使用最大似然方法进行参数估计

二、宏观因素X对微观因素Y影响的R模拟

library(lme4)  ##加载 lme4 包。lme4 包提供了用于拟合线性混合效应模型的函数

set.seed(123)  ##设置随机数生成器的种子为 123。这确保了代码的可重复性

n_groups = 10  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值