HAL库CubeMX配置STM32F103使用1.8寸(160*128)TFTLCD彩屏(ST7735)

本文使用HAL库CubeMX进行开发

1. 使用CubeMX 配置SPI:

打开CubeMX,选择STM32F103。
找到并选择合适的GPIO引脚作为LCD的数据和控制线。
启用SPI2并设置相应的引脚为输出。
启用并配置时钟。

具体配置如下图所示:


2. 配置GPIO接口:
设置GPIO为推挽输出,无上下拉,速度拉满。


3. 初始化LCD驱动程序:
本例LCD的驱动程序从厂商提供的库中获得,经过修改成功移植到HAL库。

大概步骤如下:

首先将lcd驱动程序里的数据传输函数改成HAL库的HAL_SPI_Transmit();

再将驱动程序中的u8,u16改成uint8_t,uint16_t。

delay_ms()改成HAL_Delay();

并且修改相应的头文件;

配置GPIO也改成HAL库的

最后在主函数中调用相关函数进行烧录测试;

最后观察到移植成功了。

本文可能有说得不全面的地方,后续有机会再补充。相关文件已上传至个人资源,有需要的可以去下载。

Python: Real World Machine Learning by Prateek Joshi English | 14 Nov. 2016 | ASIN: B01N74UY6B | ISBN-13: 9781787123212 | 983 Pages | MOBI/EPUB/PDF | 53.2 MB Learn to solve challenging data science problems by building powerful machine learning models using Python. Book Description Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you’ll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值