糖果
题目链接
由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。
在这一天,Dzx可以从糖果公司的 N 件产品中任意选择若干件带回家享用。
糖果公司的 N 件产品每件都包含数量不同的糖果。
Dzx希望他选择的产品包含的糖果总数是 K 的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。
当然,在满足这一条件的基础上,糖果总数越多越好。
Dzx最多能带走多少糖果呢?
注意:Dzx只能将糖果公司的产品整件带走。
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行 1 个整数,表示糖果公司该件产品中包含的糖果数目,不超过 1000000。
输出格式
符合要求的最多能达到的糖果总数,如果不能达到 K 的倍数这一要求,输出 0。
数据范围
1≤N≤100,
1≤K≤100,
输入样例:
5 7
1
2
3
4
5
输出样例:
14
样例解释
Dzx的选择是2+3+4+5=14,这样糖果总数是7的倍数,并且是总数最多的选择。
算法分析
能均分的问题,那么肯定跟余数是有关系的,
暴力枚举是需要先选出c个数然后n2的枚举,
其中有很多是重复求数,优化的话就需要用dp来解决
第一维是i个数,第二维是%k为j的集合个数
不选当前数,那么就继承i-1的状态
如果选当前数,当前余数为j,.那么我们需要想是如何从前面的状态来转换过来的
设之前的余数为x,选取当前数为w,所以时(x+w)%k==j
j是小于k的所以可以变为(x+w)%k == j%k同余方程
x+w === j (mod k) => x ===j-w (mod k)
所以选当前数量就是从余数为 j-w的状态来的
所以状态转移方程为
dp[i][j]=max(dp[i-1][j],dp[i-1][((j-w)%k+k)%k]+w);
((j-w)%k+k)%k是为了防止-w后出现负数的情况,那我们先负数+mod k再mod k就可以保证为正
代码实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std ;
int n,k;
const int maxn=110;
int dp[maxn][maxn];
int main()
{
cin>>n>>k;
memset(dp,-0x3f,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
int w;
cin>>w;
for(int j=0;j<=k-1;j++)
dp[i][j]=max(dp[i-1][j],dp[i-1][((j-w)%k+k)%k]+w);
}
cout<<dp[n][0]<<endl;
}