【进阶版】机器学习之特征降维、超参数调优及检验方法(04)

本文是进阶版机器学习系列文章的第四篇,介绍了线性判别分析(LDA)、主成分分析(PCA)这两种特征降维方法,以及超参数调优的策略。同时,探讨了检验模型性能的KS检验、T检验和F检验等方法。适合有一定机器学习基础的读者进一步提升技能。
摘要由CSDN通过智能技术生成

欢迎订阅本专栏,持续更新中~

本专栏包含大量代码项目,适用于毕业设计方向选取和实现、科研项目代码指导,每一篇文章都是通过原理讲解+代码实战进行思路构建的,如果有需要这方面的指导可以私信博主,获取相关资源及指导!

本专栏前期文章介绍!

机器学习算法知识、数据预处理、特征工程、模型评估——原理+案例+代码实战

机器学习之Python开源教程——专栏介绍及理论知识概述
机器学习框架及评估指标详解
Python监督学习之分类算法的概述
数据预处理之数据清理,数据集成,数据规

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值