深度学习分类基础概念对ACC、PPV、TPR、TNR

本文通过实例探讨了准确率(ACC)、查准率(PPV)和查全率(TPR)在猫、狗和猪分类中的应用,重点讲解了误分类对指标的影响,展示了如何计算和理解这些关键评估指标在实际问题中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
举个例子:
在这里插入图片描述
ACC = 10+15 +20/(10+1+2+3+14+4+5+6+20)

PPV(猫) = 10/(10+1+2)
【解释】这里的1和2是因为狗、猪分类错误,分到了猫
PPV(狗) = 15/(15+3+4)
PPV(猪) = 20/(20+5+6)

TPR(猫) = 10/(10+3+5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值