人工智能从入门到入土
文章平均质量分 80
实验室里哈啤酒
研究生从入门到入土
展开
-
初学者必看-pytorch框架下基于cifar-10数据集的图像分类模型
其中.Compose()函数表示将多个图片操作联合起来,而.ToTensor()则代表将图片格式转换成为tensor张量格式,.Normalize()代表归一化处理,其中最主要的做法就是:得到数据集的均值与标准差,再让每个样布减去均值,除以标准差,让图片从0~32转换到[0,1]区间内。其次,代码中使用loss.backward()时,本质上是反向求其偏导,而并没有真正的进行权重更新,我们还需要加入optimizer.step()来进行真正的更新!池化(padding=2,stride=2)-->原创 2024-03-04 22:39:31 · 1530 阅读 · 0 评论 -
yolov5报错解决办法
解决(1):train与val的位置不对。注意:可先将general的NUM_THREARD改为1,等程序train完成后 恢复原来NUM_THREARD的值 进行delect验证。有的标签在labelimg过程中的存储形式是xml.txt 此时要将.txt改为.xml.txt。解决(1):将utils/general.py的 NUM_THREARD改为1。解决(2):查看在utils/dataloader.py的中的。解决(2):程序中的num_worker改为0或1。原创 2023-12-20 17:40:48 · 1037 阅读 · 0 评论 -
Fedproto:原型聚合的联邦学习框架
文中说明,联邦学习通过计算传递梯度聚合模型时,客户端之间的异构性通常会阻碍模型优化收敛和泛化性能。故本文提出新的FedProto框架,将梯度替换成为原型,通过计算、聚合从不同客户端收集到的本地原型,然后将全局原型发送回所有客户端,以规范本地模型的训练。对每个客户机进行局部训练的目的是最小化对本地数据的分类损失,同时保持生成的本地原型足够接近相应的全局原型(损失函数最小+正则)。什么是原型?文中提到:“原创 2023-07-17 18:14:13 · 1330 阅读 · 3 评论 -
SCAFFOLD:联邦学习控制变量更新方法
原文的公式权值用x,y表示,如果结合FedAvg与FedProx的话,看起来很费劲,所以我还是按照权值为w的形式书写,相比于FedAvg只有权值聚合更新,SCAFFOLD添加了控制变量C来减少局部更新中“客户端漂移”,同时在server聚合时,对控制变量C也做了更新。在FedAvg局部更新中,为了减小客户端与服务器之间的通信效率,同时克服数据样本非独立同分布的缺陷,FedAvg选择在局部更新选用较多的epoch,SGD选用较小的步长。它在每个客户端的更新中引入了漂移,导致了缓慢和不稳定的收敛。原创 2023-07-09 10:47:58 · 600 阅读 · 3 评论 -
【FedProx】论文笔记
在client本地增加计算量,而通信时只进行加权聚合操作。【FedAvg论文笔记】&【代码复现】_fedavg代码_爽爽不会编程的博客-CSDN博客FedAvg的缺点:1、不允许参与设备根据底层的系统执行可变的轮次(就是本地局部迭代轮次E是固定的),故算力不同的设备迭代固定E轮次的时间不同,这对后面服务区等待聚合局部模型肯定会有影响嘛。2、某些设备在规定时间位未达到收敛会被服务器“丢弃”。原创 2023-03-15 18:36:11 · 3153 阅读 · 4 评论 -
【深度梯度压缩】DGC论文笔记
DGC包括:动量校正、局部梯度剪切、动量因子掩蔽和热身训练。原创 2023-04-05 19:07:09 · 1015 阅读 · 1 评论 -
【SGD深入理解】vanilia SGD&momentum SGD
SGD是当下使用最广泛地优化器,原理是通过求得当前参数损失函数的最大梯度,往梯度的反方向走即可走到损失函数的极小值点。可以想象成盲人要寻找最快下山的过程,那就是不断地摸索当下点周围最陡峭的方位,沿着那个方位走是最大概率时间最短到达山谷的。原创 2023-04-05 16:06:35 · 790 阅读 · 1 评论 -
差分隐私入门-噪声机制分类
首先什么是差分隐私?e-DP差分隐私算法:给对于两个数据集D和D’,D和D’相差一条记录,记作|DΔD'|≤1,一个随机算法A,S为A在D和D’数据集上输出的结果,S∈range(A),符合下面的公式,则称A满足e-DP差分隐私:Pr[]是隐私被泄露的概率,e是指隐私保护参数,可以表示隐私保护的程度,它越小,隐私保护越好,但是加入的噪声就越大,数据可用性就下降了通俗而言,在数据集中修改一条数据,不会对算法输出的分布带来太大的影响,当攻击者观察输出结果S时,很难区分出数据到底来自D还是D’。原创 2022-11-04 22:39:05 · 2696 阅读 · 0 评论