使用cv2对视频指定区域进行去噪

视频去噪其实和图象一样,只是需要现将视频截成图片,在对图片进行去噪,将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。

去噪步骤

1、视频逐帧读成图片

2、图片指定区域批量去噪

2、去噪后的图片写入视频

1、视频逐帧读成图片

有两种方法,第一种是直接将图片读入内存,图片就是以numpy格式存在内存中,优点是可以极快的增加图片的读取速度,但过长的视频可能会导致内存爆满。第二种是逐帧将图片读到本地文件夹,以png的格式存到指定路径中,优点是不占用内存,但是由于加入了cv2.imwrite(),会耗费一定的时间。由于我这次不在服务器上跑,所以选择第二种方法。

def make_frame_img(video_path, output_path):
    """
    从视频文件中抽取帧数图片,保存到指定路径
    参数:
    video_path: 输入视频路径
    output_path: 保存帧图片文件夹
    return 无
    """
    # 读取视频文件
    cap = cv2.VideoCapture(video_path)
    # 检查视频是否成功打开
    if not cap.isOpened():
        print("无法打开视频文件:", video_path)
        return
    # 获取视频帧率和总帧数
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    # 如果没有创建输出文件夹,则创建输出文件夹
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    # 分割视频为照片
    print("beginning to extract frames from video !")
    for i in tqdm(range(total_frames)):
        ret, frame = cap.read()
        if ret:
            # 保存照片
            filename = f'./frame_%04d.png' % i
            filepath = os.path.join(output_path, filename)
            cv2.imwrite(filepath, frame)
        else:
            break

2、图片指定区域批量去噪

可以参考我写的上篇博客,图象去噪。但是上篇博客只是对单个图片全图去噪,这次我们需要的是对一个文件夹里的图片指定区域进行批量去噪。

2.1、图象指定区域去噪

本次的任务是对图象下半部分进行中值滤波,故只需将原图裁剪一般得到下张图,对下半张图进行滤波后,与未滤波的上半张图像进行拼接,可使用纵向堆叠的np.vstack()实现图象上下拼接。

def mid_move_noise(noise_image): # 对图像下半部分进行中值去噪
    image = cv2.imread(noise_image)
    h, w = image.shape[:2]
    half_height = h // 2
    bottom_half = image[half_height:, :]
    bottom_half = cv2.medianBlur(bottom_half, 9)
    image = np.vstack((image[:half_height, :], bottom_half))
    return image

2.2、写一个for 循环遍历文件夹中的图片进行图像指定区域去噪,将去噪后的图片写入到指定文件夹下。

def from_fold_process_images(source_folder, result_folder):
    print("image process from folder: " + source_folder)
    for img_name in tqdm(os.listdir(source_folder)):
        img_path = os.path.join(source_folder, img_name)
        if img_name.endswith('.png'):
            # 构建输出图片的路径
            output_path = os.path.join(result_folder, img_name)
            # 应用中值滤波并保存
            img = mid_move_noise(img_path)
            cv2.imwrite(output_path, img)

3、去噪图片写入成视频

def merge_to_video(img_path, output_video_path):
    print("image merge to video")
    """
    将图片合成视频
    参数:
    img_path 输入图片路径
    output_video_path 输出视频路径
    return 无
    """
    # 传入输入路径中的所有图像
    image_files = [f for f in os.listdir(img_path) if f.endswith(".png")]
    image_files.sort()
    # 获取图像尺寸
    img = cv2.imread(os.path.join(img_path, image_files[0]))
    height, width, _ = img.shape

    # 创建用于写入视频的VideoWriter对象
    video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), 30, (width, height))
    # 逐个读取图像并将其写入视频
    for image_file in tqdm(image_files):
        img = cv2.imread(os.path.join(img_path, image_file))
        video_writer.write(img)
    print("Video has been created successfully!")
    video_writer.release()

测试代码:

make_frame_img('./noise.mp4', './video_fps')
from_fold_process_images('./video_fps', './move_noise_fps')
merge_to_video('./move_noise_fps', './denoise.mp4')

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是一个比较复杂的问题,需要分步骤进行回答。 首先,读取图像视频可以使用OpenCV库中的cv2.VideoCapture()函数,代码如下: ``` python import cv2 cap = cv2.VideoCapture('video.mp4') while cap.isOpened(): ret, frame = cap.read() if ret: cv2.imshow('frame', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() cv2.destroyAllWindows() ``` 其中,`cap.read()`函数读取一帧视频帧,`cv2.imshow()`函数显示图像,`cv2.waitKey()`函数等待用户按下键盘上的某个按键,`cap.release()`函数释放视频文件,`cv2.destroyAllWindows()`函数关闭所有窗口。 其次,将彩色图像转换为灰度图可以使用OpenCV库中的cv2.cvtColor()函数,代码如下: ``` python gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('gray', gray) ``` 其中,`cv2.COLOR_BGR2GRAY`表示将BGR格式的彩色图像转换为灰度图。 然后,使用高斯滤波去噪可以使用OpenCV库中的cv2.GaussianBlur()函数,代码如下: ``` python blur = cv2.GaussianBlur(gray, (3, 3), 0) cv2.imshow('blur', blur) ``` 其中,`(3, 3)`表示高斯核的大小,`0`表示标准差。 接着,使用Prewitt算子实现车道线边缘检测可以使用OpenCV库中的cv2.filter2D()函数,代码如下: ``` python kernelx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], dtype=int) kernely = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int) prewittx = cv2.filter2D(blur, -1, kernelx) prewitty = cv2.filter2D(blur, -1, kernely) prewitt = cv2.addWeighted(prewittx, 0.5, prewitty, 0.5, 0) cv2.imshow('prewitt', prewitt) ``` 其中,`kernelx`和`kernely`分别是Prewitt算子的两个卷积核,`cv2.filter2D()`函数对图像进行卷积运算,`cv2.addWeighted()`函数将两个卷积结果进行加权平均。 生成Mask掩模可以使用OpenCV库中的cv2.fillPoly()函数,代码如下: ``` python mask = np.zeros_like(prewitt) region_of_interest_vertices = np.array([[(0, height), (width / 2, height / 2), (width, height)]], dtype=np.int32) cv2.fillPoly(mask, region_of_interest_vertices, 255) masked_image = cv2.bitwise_and(prewitt, mask) cv2.imshow('mask', masked_image) ``` 其中,`np.zeros_like()`函数创建一个与输入数组`prewitt`相同形状的全0数组,`cv2.fillPoly()`函数将指定区域内的像素值设为255,`cv2.bitwise_and()`函数对图像进行按位与运算。 霍夫变换检测直线可以使用OpenCV库中的cv2.HoughLinesP()函数,代码如下: ``` python lines = cv2.HoughLinesP(masked_image, rho=6, theta=np.pi / 60, threshold=160, lines=np.array([]), minLineLength=40, maxLineGap=25) line_image = np.zeros_like(frame) if lines is not None: for line in lines: x1, y1, x2, y2 = line[0] cv2.line(line_image, (x1, y1), (x2, y2), (0, 0, 255), 3) lane_image = cv2.addWeighted(frame, 0.8, line_image, 1, 0) cv2.imshow('lane', lane_image) ``` 其中,`cv2.HoughLinesP()`函数对图像进行霍夫变换,`cv2.line()`函数绘制直线,`cv2.addWeighted()`函数将直线图像和原图像进行加权融合。 最后,绘制车道线可以使用OpenCV库中的cv2.putText()函数,代码如下: ``` python cv2.putText(lane_image, 'Lane Detection', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) cv2.imshow('lane', lane_image) ``` 其中,`cv2.putText()`函数在图像上绘制文本。 完整代码如下: ``` python import cv2 import numpy as np cap = cv2.VideoCapture('video.mp4') while cap.isOpened(): ret, frame = cap.read() if ret: height, width = frame.shape[:2] gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (3, 3), 0) kernelx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], dtype=int) kernely = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int) prewittx = cv2.filter2D(blur, -1, kernelx) prewitty = cv2.filter2D(blur, -1, kernely) prewitt = cv2.addWeighted(prewittx, 0.5, prewitty, 0.5, 0) mask = np.zeros_like(prewitt) region_of_interest_vertices = np.array([[(0, height), (width / 2, height / 2), (width, height)]], dtype=np.int32) cv2.fillPoly(mask, region_of_interest_vertices, 255) masked_image = cv2.bitwise_and(prewitt, mask) lines = cv2.HoughLinesP(masked_image, rho=6, theta=np.pi / 60, threshold=160, lines=np.array([]), minLineLength=40, maxLineGap=25) line_image = np.zeros_like(frame) if lines is not None: for line in lines: x1, y1, x2, y2 = line[0] cv2.line(line_image, (x1, y1), (x2, y2), (0, 0, 255), 3) lane_image = cv2.addWeighted(frame, 0.8, line_image, 1, 0) cv2.putText(lane_image, 'Lane Detection', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) cv2.imshow('lane', lane_image) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() cv2.destroyAllWindows() ``` 希望能够帮到你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值