Datawhale 24夏令营第四期 大模型应用开发 RAG开发

注:本文章内容来自Datawhale官方教程,这里仅作一个梳理与记录用于回顾。

一、 RAG介绍

1. 定义

        检索增强生成(Retrieval Augmented Generation, RAG)通过引入外部知识,使大模型能够生成准确且符合上下文的答案,同时能够减少模型幻觉的出现。由于RAG简单有效,它已经成为主流的大模型应用方案之一。

2. 步骤

        如下图所示,RAG通常包括以下三个基本步骤:

  • 索引:将文档库分割成较短的 Chunk,即文本块或文档片段,然后构建成向量索引。

  • 检索:计算问题和 Chunks 的相似度,检索出若干个相关的 Chunk。

  • 生成:将检索到的Chunks作为背景信息,生成问题的回答。

3. RAG链路

        从下图可以看到,线上接收到用户query后,RAG会先进行检索,然后将检索到的 Chunksquery 一并输入到大模型,进而回答用户的问题。

        为了完成检索,需要离线将文档(ppt、word、pdf等)经过解析、切割甚至OCR转写,然后进行向量化存入数据库中。

(图片来源:https://github.com/netease-youdao/QAnything

3.1 离线计算

        首先,知识库中包含了多种类型的文件,如pdf、word、ppt等,这些 文档(Documents)需要提前被解析,然后切割成若干个较短的 Chunk,并且进行清洗和去重

        由于知识库中知识的数量和质量决定了RAG的效果,因此这是非常关键且必不可少的环节。

        然后,我们会将知识库中的所有 Chunk转成向量,这一步也称为 向量化(Vectorization)或者 索引(Indexing)。向量化 需要事先构建一个 向量模型(Embedding Model),它的作用就是将一段 Chunk 转成 向量(Embedding)。如下图所示:

        一个好的向量模型,会使得具有相同语义的文本的向量表示在语义空间中的距离会比较近,而语义不同的文本在语义空间中的距离会比较远。

        由于知识库中的所有 Chunk 都需要进行 向量化,这会使得计算量非常大,因此这一过程通常是离线完成的。

        随着新知识的不断存储,向量的数量也会不断增加。这就需要将这些向量存储到 数据库 (DataBase)中进行管理,例如 Milvus 中。

3.2 在线计算

        在实际使用RAG系统时,当给定一条用户 查询(Query),需要先从知识库中找到所需的知识,这一步称为 检索(Retrieval)。

        在 检索 过程中,用户查询首先会经过向量模型得到相应的向量,然后与 数据库 中所有 Chunk 的向量计算相似度,最简单的例如 余弦相似度,然后得到最相近的一系列 Chunk

        由于向量相似度的计算过程需要一定的时间,尤其是 数据库 非常大的时候。

        这时,可以在检索之前进行 召回(Recall),即从 数据库 中快速获得大量大概率相关的 Chunk,然后只有这些 Chunk 会参与计算向量相似度。这样,计算的复杂度就从整个知识库降到了非常低。

  召回 步骤不要求非常高的准确性,因此通常采用简单的基于字符串的匹配算法。由于这些算法不需要任何模型,速度会非常快,常用的算法有 TF-IDFBM25 等。

        另外,也有很多工作致力于实现更快的 向量检索 ,例如 faissannoy

        另一方面,人们发现,随着知识库的增大,除了检索的速度变慢外,检索的效果也会出现退化,如下图中绿线所示:

(图片来源:https://github.com/netease-youdao/QAnything

        这是由于 向量模型 能力有限,而随着知识库的增大,已经超出了其容量,因此准确性就会下降。在这种情况下,相似度最高的结果可能并不是最优的。为了解决这一问题,提升RAG效果,研究者提出增加一个二阶段检索——重排 (Rerank),即利用 重排模型(Reranker),使得越相似的结果排名更靠前。这样就能实现准确率稳定增长,即数据越多,效果越好(如上图中紫线所示)。

        通常,为了与 重排 进行区分,一阶段检索有时也被称为 精排 。而在一些更复杂的系统中,在 召回精排 之间还会添加一个 粗排 步骤,这里不再展开,感兴趣的同学可以自行搜索。

        综上所述,在整个 检索 过程中,计算量的顺序是 召回 > 精排 > 重排,而检索效果的顺序则是 召回 < 精排 < 重排

        当这一复杂的 检索 过程完成后,我们就会得到排好序的一系列 检索文档(Retrieval Documents)。然后我们会从其中挑选最相似的 k 个结果,将它们和用户查询拼接成prompt的形式,输入到大模型。 最后,大型模型就能够依据所提供的知识来生成回复,从而更有效地解答用户的问题。

        至此,一个完整的RAG链路就构建完毕了。

二、 开源RAG框架

目前,开源社区中已经涌现出了众多RAG框架,例如:

  • TinyRAG:DataWhale成员宋志学精心打造的纯手工搭建RAG框架。

  • LlamaIndex:一个用于构建大语言模型应用程序的数据框架,包括数据摄取、数据索引和查询引擎等功能。

  • LangChain:一个专为开发大语言模型应用程序而设计的框架,提供了构建所需的模块和工具。

  • QAnything:网易有道开发的本地知识库问答系统,支持任意格式文件或数据库。

  • RAGFlow:InfiniFlow开发的基于深度文档理解的RAG引擎。

在RAG实战中,我们需要构建一个向量模型。

目前,开源的基于BERT架构的向量模型有如下:

  • BGE Embedding:智源通用embedding(BAAI general embedding, BGE)

  • BCEmbedding:网易有道训练的Bilingual and Crosslingual Embedding

  • jina-embeddings:Jina AI训练的text embedding

  • M3E:MokaAI训练的 Massive Mixed Embedding

  • ···

除了BERT架构之外,还有基于LLM的向量模型有如下:

其次,还有API:

三、 源2.0-2B RAG实战

        在实战之前,需要开通阿里云PAI-DSW试用,并在魔搭社区创建PAI实例,请看Datawhale 24夏令营第四期 大模型应用开发 Task1:跑通baseline-CSDN博客

1. 环境准备

进入实例,点击终端。

        运行下面代码,下载文件,并将Task 3:源大模型RAG实战中内容拷贝到当前目录

git lfs install
git clone https://www.modelscope.cn/datasets/Datawhale/AICamp_yuan_baseline.git
cp AICamp_yuan_baseline/Task\ 3:源大模型RAG实战/* .

        双击打开Task 3:源大模型RAG实战.ipynb,然后运行所有单元格。

        通过下面的命令,我们可以看到ModelScope已经提供了所需要的大部分依赖,如 torchtransformers 等。

# 查看已安装依赖
pip list

        但是为了进行模型微调以及Demo搭建,还需要在环境中安装streamlit

# 安装 streamlit
pip install streamlit==1.24.0

2. 模型下载

        在RAG实战中,我们需要构建一个向量模型。向量模型通常采用BERT架构,它是一个Transformer Encoder。

        本次选用基于BERT架构的向量模型 bge-small-zh-v1.5,它是一个4层的BERT模型,最大输入长度512,输出的向量维度也为512。bge-small-zh-v1.5 支持通过多个平台进行下载,可以直接选择通过魔搭进行下载。模型在魔搭平台的地址为 AI-ModelScope/bge-small-zh-v1.5

2.1 向量模型下载

# 向量模型下载
from modelscope import snapshot_download
model_dir = snapshot_download("AI-ModelScope/bge-small-zh-v1.5", cache_dir='.')

          这里使用的是 modelscope 中的 snapshot_download 函数,第一个参数为模型名称 AI-ModelScope/bge-small-zh-v1.5,第二个参数 cache_dir 为模型保存路径,这里.表示当前路径。

          下载完成后,会在当前目录增加一个名为 AI-ModelScope 的文件夹,其中 bge-small-zh-v1___5 里面保存着我们下载好的向量模型。

2.2 下载源大模型 

# 源大模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('IEITYuan/Yuan2-2B-Mars-hf', cache_dir='.')

3. RAG实战

3.1 索引

        为了构造索引,这里我们封装了一个向量模型类 EmbeddingModel

# 定义向量模型类
class EmbeddingModel:
    """
    class for EmbeddingModel
    """

    def __init__(self, path: str) -> None:
        self.tokenizer = AutoTokenizer.from_pretrained(path)

        self.model = AutoModel.from_pretrained(path).cuda()
        print(f'Loading EmbeddingModel from {path}.')

    def get_embeddings(self, texts: List) -> List[float]:
        """
        calculate embedding for text list
        """
        encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
        encoded_input = {k: v.cuda() for k, v in encoded_input.items()}
        with torch.no_grad():
            model_output = self.model(**encoded_input)
            sentence_embeddings = model_output[0][:, 0]
        sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
        return sentence_embeddings.tolist()

        通过传入模型路径,新建一个 EmbeddingModel 对象 embed_model

        初始化时自动加载向量模型的tokenizer和模型参数。

print("> Create embedding model...")
embed_model_path = './AI-ModelScope/bge-small-zh-v1___5'
embed_model = EmbeddingModel(embed_model_path)

  EmbeddingModel 类还有一个 get_embeddings() 函数,它可以获得输入文本的向量表示。

        注意,这里为了充分发挥GPU矩阵计算的优势,输入和输出都是一个 List,即多条文本和他们的向量表示。

3.2 检索

        为了实现向量检索,我们定义了一个向量库索引类 VectorStoreIndex

# 定义向量库索引类
class VectorStoreIndex:
    """
    class for VectorStoreIndex
    """

    def __init__(self, doecment_path: str, embed_model: EmbeddingModel) -> None:
        self.documents = []
        for line in open(doecment_path, 'r', encoding='utf-8'):
            line = line.strip()
            self.documents.append(line)

        self.embed_model = embed_model
        self.vectors = self.embed_model.get_embeddings(self.documents)

        print(f'Loading {len(self.documents)} documents for {doecment_path}.')

    def get_similarity(self, vector1: List[float], vector2: List[float]) -> float:
        """
        calculate cosine similarity between two vectors
        """
        dot_product = np.dot(vector1, vector2)
        magnitude = np.linalg.norm(vector1) * np.linalg.norm(vector2)
        if not magnitude:
            return 0
        return dot_product / magnitude

    def query(self, question: str, k: int = 1) -> List[str]:
        question_vector = self.embed_model.get_embeddings([question])[0]
        result = np.array([self.get_similarity(question_vector, vector) for vector in self.vectors])
        return np.array(self.documents)[result.argsort()[-k:][::-1]].tolist() 

        类似地,通过传入知识库文件路径,新建一个 VectorStoreIndex 对象 index

        初始化时会自动读取知识库的内容,然后传入向量模型,获得向量表示。

print("> Create index...")
doecment_path = './knowledge.txt'
index = VectorStoreIndex(doecment_path, embed_model)

        上文提到 get_embeddings() 函数支持一次性传入多条文本,但由于GPU的显存有限,输入的文本不宜太多。所以,如果知识库很大,需要将知识库切分成多个batch,然后分批次送入向量模型。

        这里,因为我们的知识库比较小,所以就直接传到了 get_embeddings() 函数。

        其次,VectorStoreIndex 类还有一个 get_similarity() 函数,它用于计算两个向量之间的相似度,这里采用了余弦相似度。

        最后,我们介绍一下 VectorStoreIndex 类的入口,即查询函数 query()。传入用户的提问后,首先会送入向量模型获得其向量表示,然后与知识库中的所有向量计算相似度,最后将 k 个最相似的文档按顺序返回,k默认为1。

question = '介绍一下广州大学'
print('> Question:', question)

context = index.query(question)
print('> Context:', context)

3.3 生成

        为了实现基于RAG的生成,我们还需要定义一个大语言模型类 LLM

# 定义大语言模型类
class LLM:
    """
    class for Yuan2.0 LLM
    """

    def __init__(self, model_path: str) -> None:
        print("Creat tokenizer...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, add_eos_token=False, add_bos_token=False, eos_token='<eod>')
        self.tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>','<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True)

        print("Creat model...")
        self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()

        print(f'Loading Yuan2.0 model from {model_path}.')

    def generate(self, question: str, context: List):
        if context:
            prompt = f'背景:{context}\n问题:{question}\n请基于背景,回答问题。'
        else:
            prompt = question

        prompt += "<sep>"
        inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"].cuda()
        outputs = self.model.generate(inputs, do_sample=False, max_length=1024)
        output = self.tokenizer.decode(outputs[0])

        print(output.split("<sep>")[-1])

        这里我们传入 Yuan2-2B-Mars 的模型路径,新建一个 LLM 对象 llm

        初始化时自动加载源大模型的tokenizer和模型参数。

print("> Create Yuan2.0 LLM...")
model_path = './IEITYuan/Yuan2-2B-Mars-hf'
llm = LLM(model_path)

LLM 类的入口是生成函数 generate(),它有两个参数:

  • question: 用户提问,是一个str

  • context: 检索到的上下文信息,是一个List,默认是[],代表没有使用RAG

运行下面的代码,即可体验使用RAG技术之后 Yuan2-2B-Mars 模型的回答效果:

print('> Without RAG:')
llm.generate(question, [])

print('> With RAG:')
llm.generate(question, context)

        如下所示,如果模型依赖自己的底层知识进行回答,就很容易出现幻觉,生成 广州大学成立于1952年,前身为广州工学院 这样错误的内容。

        使用RAG之后,模型能够结果知识库中的知识,准确回答用户的提问。

注意:记得关闭实例

  • 29
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值