第五周:使用PyTorch实现运动鞋识别

一、本周学习内容

1、了解如何设置动态学习率(重点)
2、保存训练过程中的最佳模型权重
3、调整代码使测试集accuracy到达86%。

二、前言

本次使用pytorch实现对运动鞋品牌的识别,标签分为两类:‘adidas’和’nike’。数据集下载地址:链接: link

三、电脑环境

电脑系统:macOS Monterey 12.7.4
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:torch:2.2.1 torchvision:0.17.1

四、前期准备

1、导入相关依赖项,设置CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2、加载数据

import os,PIL,random,pathlib

data_dir = './data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames

输出为:

[‘test’, ‘train’]

3、数据可视化

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './data/train/nike/'

image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

fig, axes = plt.subplots(3, 8, figsize=(16, 6))

for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

plt.tight_layout()
plt.show()

在这里插入图片描述
图形变换操作:

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder("./data/train/",transform=train_transforms)
test_dataset  = datasets.ImageFolder("./data/test/",transform=train_transforms)

将数据集类别映射为数字索引:

数据集有两个类别:adidas和nike。

train_dataset.class_to_idx

输出为:

{‘adidas’: 0, ‘nike’: 1}

4、划分数据集

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

查看数据格式:

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出为:

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64

五、搭建简单的CNN网络

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0),
            nn.BatchNorm2d(12),
            nn.ReLU()
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0),
            nn.BatchNorm2d(24),
            nn.ReLU()
        )

        self.conv3 = nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0),
            nn.BatchNorm2d(24),
            nn.ReLU()
        )

        self.conv4 = nn.Sequential(
            nn.Conv2d(24, 48, kernel_size=5, padding=0),
            nn.BatchNorm2d(48),
            nn.ReLU()
        )

        self.conv5 = nn.Sequential(
            nn.Conv2d(48, 48, kernel_size=5, padding=0),
            nn.BatchNorm2d(48),
            nn.ReLU()
        )

        self.conv6 = nn.Sequential(
            nn.Conv2d(48, 96, kernel_size=5, padding=0),
            nn.BatchNorm2d(96),
            nn.ReLU()
        )

        self.pool = nn.Sequential(
            nn.MaxPool2d(2)
        )


        self.dropout = nn.Sequential(
            nn.Dropout(0.2)
        )

        self.fc1 = nn.Sequential(
            nn.Linear(96*47*47, len(classeNames))
        )

        
    def forward(self, x):
        batch_size = x.size(0)
        x = self.conv1(x)    # 224 -> 220
        x = self.conv2(x)    # 220 -> 216
        x = self.conv3(x)    # 216 -> 212
        x = self.pool(x)     # 212 -> 106
        x = self.conv4(x)    # 106 -> 102
        x = self.conv5(x)    # 102 -> 98
        x = self.conv6(x)    # 98 -> 94
        x = self.pool(x)     # 94 -> 47
        x = self.dropout(x)
        x = x.view(batch_size, -1)
        x = self.fc1(x)
        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

model = Model().to(device)
model

六、训练模型

1、编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2、编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    test_acc, test_loss = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            test_loss += loss.item()

    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

3、设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.92
    lr = start_lr * (0.92 ** (epoch // 2))
    # 遍历优化器中的所有参数组,并将每个参数组的学习率设置为新计算出的 lr。
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

✨调用官方动态学习率接口,与上面方法是等价的:

# # 调用官方动态学习率接口时使用
# lambda1 = lambda epoch: (0.92 ** (epoch // 2)
# optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

4、正式训练

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

输出结果:
在这里插入图片描述

七、结果可视化

1、Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

torch.squeeze()函数和torch.unsqueeze()函数在之前的文章中有介绍。

from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

从adidas文件夹随机选一张图片进行预测:

# 预测训练集中的某张照片
predict_one_image(image_path='./data/test/adidas/1.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

输出:

预测结果是:adidas

八、保存并加载模型

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

九、动态学习率

1. torch.optim.lr_scheduler.StepLR

等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。

函数原型:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

2. lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。

函数原型:

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数

用法示例:

lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3.lr_scheduler.MultiStepLR

在特定的 epoch 中调整学习率

函数原型:

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[2,6,15], #调整学习率的epoc数
gamma=0.1)

更多的官方动态学习率设置方式可参考:https://pytorch.org/docs/stable/optim.html

👉调用官方接口示例:

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

总结:

对比k导给出的示例代码,我没有跑出很好的效果。

  • 我尝试增大 Dropout(0.2) 层的参数,其他网络结构不变 -> 效果不好;
  • 尝试按比例增加输出通道数,其他保持不变 -> 效果不好;
  • 尝试增加卷积层(Dropout层参数保持不变和增加两种情况) -> 效果不好。

综合其他博主的文章,我尝试了上面代码给出的网络结构,三个“卷积-BN-激活”之后跟一个池化,三个“卷积-BN-激活”之后跟一个池化,跑出来的结果完成了要求,测试集准确率达到了88%。

对于网络层的结构和通道数的设置,还是要多尝试几次,寻找效果较好的结构。

### 回答1: 好的,第4关的任务是使用pytorch搭建卷积神经网络来识别手写数字。这个任务需要掌握pytorch的基本操作和卷积神经网络的原理,同时需要对手写数字数据集有一定的了解。通过这个任务,可以深入理解卷积神经网络在图像识别中的应用。 ### 回答2: 随着机器学习和人工智能技术的发展,卷积神经网络成为了图像识别领域的重要工具。PyTorch是流行的深度学习框架之一,可以方便地搭建神经网络模型,特别是卷积神经网络模型。 搭建卷积神经网络识别手写数字的步骤如下: 一、准备数据 我们需要手写数字的数据集,可以使用MNIST数据集,该数据集包括60,000个训练图像和10,000个测试图像。 二、定义模型 我们可以使用PyTorch提供的nn模块定义卷积神经网络模型。其中包括卷积层、池化层和全连接层等,还有激活函数、批量归一化等常见的组件。 三、训练模型 我们需要选择优化算法,例如随机梯度下降(SGD)、Adam等,然后根据训练数据进行训练。这个过程中需要定义损失函数,例如交叉熵损失函数。 四、测试模型 我们可以使用测试数据进行模型测试,计算分类准确率等指标。 代码演示: 以下是一个简单的卷积神经网络的代码示例,用于识别手写数字: ```python import torch import torch.nn as nn import torch.utils.data as Data import torchvision from torchvision import transforms # 定义数据处理方式 transform = transforms.Compose([ transforms.ToTensor(), # 将图片转换为Tensor transforms.Normalize((0.1307,), (0.3081,)) # 标准化 ]) # 准备数据集 train_set = torchvision.datasets.MNIST( root='./data/', train=True, transform=transform, download=True ) train_loader = Data.DataLoader( dataset=train_set, batch_size=64, shuffle=True ) test_set = torchvision.datasets.MNIST( root='./data/', train=False, transform=transform, download=True ) test_loader = Data.DataLoader( dataset=test_set, batch_size=64, shuffle=True ) # 定义卷积神经网络模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, 1, padding=1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 定义模型和训练参数 model = CNN() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 测试模型 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Epoch {} Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( epoch, test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) ``` 这段代码定义了一个简单的卷积神经网络模型,包括两个卷积层、两个池化层和两个全连接层。训练10个epoch后,输出测试集的平均损失和分类准确率。 以上便是使用PyTorch搭建卷积神经网络识别手写数字的简要步骤和代码示例。 ### 回答3: 卷积神经网络是一种广泛应用于图像识别和自然语言处理等领域的深度学习模型。而PyTorch是一个非常优秀的深度学习框架,可以方便地实现卷积神经网络。在本题中,我们将使用PyTorch搭建卷积神经网络来识别手写数字。 在使用PyTorch搭建卷积神经网络之前,需要先导入需要的库。这里我们需要导入torch、torchvision和numpy三个库。其中,torch是PyTorch的核心库,torchvision是一些通用的视觉工具集,numpy是Python中处理矩阵和数组的库。导入完成后,我们需要先定义一个卷积神经网络的类,这里我们命名为Net。 Net类中包括了网络的初始化、前向传播、训练和测试四个部分。在初始化中,我们定义了一些卷积层、池化层、全连接层、Dropout层和Batch Normalization层。这些层将构成我们的卷积神经网络。在前向传播中,我们定义了整个网络的逻辑。在训练和测试中,我们使用PyTorch提供的优化器和损失函数来进行训练和测试。 在搭建完卷积神经网络之后,我们需要准备手写数字数据集,并进行数据的预处理。这里我们使用了MNIST数据集,该数据集包含了一些手写数字的图像数据,每个图像对应一个数字标签。我们使用torchvision中的transforms来对数据进行预处理。预处理的步骤包括将图像转换为PyTorch张量、将像素点的值归一化等。最终我们得到了训练集和测试集两个数据集。 接着,我们需要将数据集输入到卷积神经网络中进行训练和测试。在训练过程中,我们按照批次对数据进行处理,然后将处理后的数据输入到网络中进行训练。在每个批次中,我们会计算模型的损失值,并使用PyTorch提供的优化器来更新网络中的参数。训练过程中,我们还会记录下网络的准确率和损失值等指标。在测试过程中,我们只需要将测试集输入到网络中,然后进行预测即可。最终,我们可以通过输出网络的预测结果来测试模型的准确率。 总的来说,使用PyTorch搭建卷积神经网络识别手写数字的过程包括了数据准备、网络搭建、训练和测试四个步骤。通过不断调整网络中的参数和优化策略,我们可以得到一个表现良好的卷积神经网络来进行手写数字的识别任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值