pandas学习这些就够了

pandas的学习思路:

实际工作当中我们在使用pandas库的时候,我们应该有什么样的思路? 那些使我们经常使用到的?

总的思想就是导入数据进行处理,根据结果生成图像,从结果得到结论,那这么多的api 我们如何去记忆, 那些是工作中经常被使用到的,我们下面来分别进行讨论.

一、基本概念

  1. 了解 pandas 是用于数据操作和分析的库。

  2. 明白 Series 和 DataFrame 这两种主要数据结构的特点,下面我们来认识一下这两数据结构

    Series 可以看作是一个一维的、带标签的数组。它有一个标签序列(index)和一个值序列(data)。Series 的标签通常是唯一的,但这不是强制的。

    示例

    import pandas as pd  
      
    # 创建一个简单的 Series  
    s = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])  
    print(s)
    

    输出:

    a    1  
    b    2  
    c    3  
    d    4  
    dtype: int64
    

    在这个示例中,'a', 'b', 'c', 'd' 是索引(index),1, 2, 3, 4 是对应的值(data)。

    DataFrame 是一个二维的、大小可变的、具有潜在异构类型列的表格型数据结构。你可以将其看作是一个 Excel 表格或 SQL 表,或者是一个由 Series 对象组成的字典。DataFrame 的每一列都可以是一个不同值的类型(数值、字符串、布尔值等)。

    示例

    # 创建一个简单的 DataFrame  
    df = pd.DataFrame({  
        'A': [1, 2, 3],  
        'B': [4, 5, 6],  
        'C': ['x', 'y', 'z']  
    })  
    print(df)
    

    输出:

    A  B  C  
    0  1  4  x  
    1  2  5  y  
    2  3  6  z
    

    在这个示例中,A, B, C 是列标签,0, 1, 2 是行索引。

二、实际工作的分析数据的流程

  • (1) 生成数据表**😗* 工作当中一般是用导入.scv文件和.excel文件居多, 或者连接数据库读取数据库里的表数据
  • (2)数据表信息查看**😗* 这个步骤的目的是使我们能快速了解数据表的结构,方便我们下面处理数据
    • (3)数据表清洗
    • (4)数据预处理
    • (5)数据提取
    • (6)数据筛选
    • (7)数据汇总
    • (8)数据统计
  • (9)数据输出
  • (10)数据的可视化: 以图表的形式进行展现,更加的直观

三、对应具体的api 归纳汇总如下(注意重点已加粗):

一、生成数据表

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as np
import pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))

二、数据表信息查看(pandas的属性api)

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、统计每列的(最大值,最小值,平均值,标准差等):

df.describe()

4、某一列格式:

df['B'].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df['B'].isnull()

7、查看某一列的唯一值:

df['B'].unique()

8、查看数据表的值:

df.values 

9、查看列名称:

df.columns

10、查看前5行数据、后5行数据:

df.head() #默认前5行数据
df.tail()    #默认后5行数据

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的平均值对NA进行填充:

df['prince'].fillna(df['prince'].mean())

3、清除city字段的字符空格:

df['city']=df['city'].map(str.strip)

4、大小写转换:

df['city']=df['city'].str.lower()

5、更改数据格式:

df['price'].astype('int')       

6、更改列名称:

df.rename(columns={'category': 'category-size'}) 

7、删除后出现的重复值:

df['city'].drop_duplicates()

8 、删除先出现的重复值:

df['city'].drop_duplicates(keep='last')

9、数据替换:

df['city'].replace('sh', 'shanghai')

四、数据预处理

1、数据表合并(工作当中更多的是联表进行查询的)
1.1 merge()

# 横向添加数据
df.merge(df1,how='left', on ='列名') #左表的全部 + 交集 
df.merge(df1,how='right', on ='列名')  #交集+ 右表的全部     
df.merge(df1,how='inner', on ='列名')  #交集
df.merge(df1,how='outer', on ='列名') #左表全部+右表的全部

1.2 append()

# 纵向添加数据
result = df1.append(df2)  

1.3 join()

# 横向添加数据
df.join(df1,how='right', on='key')  # 如果不指定连接列名默认更具索引进行连表

1.4 concat()

# 根据axis 可以纵向或者横向添加数据
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
	          keys=None, levels=None, names=None, verify_integrity=False,
	          copy=True)

objs︰ 一个序列或系列、 综合或面板对象的映射。如果字典中传递,将作为键参数,使用排序的键,除非它传递,在这种情况下的值将会选择
(见下文)。任何没有任何反对将默默地被丢弃,除非他们都没有在这种情况下将引发 ValueError。
axis: {0,1,…},默认值为 0。要连接沿轴。
join: {‘内部’、 ‘外’},默认 ‘外’。如何处理其他 axis(es) 上的索引。联盟内、 外的交叉口。
ignore_index︰ 布尔值、 默认 False。如果为 True,则不要串联轴上使用的索引值。由此产生的轴将标记
0,…,n-1。这是有用的如果你串联串联轴没有有意义的索引信息的对象。请注意在联接中仍然受到尊重的其他轴上的索引值。
join_axes︰ 索引对象的列表。具体的指标,用于其他 n-1 轴而不是执行内部/外部设置逻辑。 keys︰
序列,默认为无。构建分层索引使用通过的键作为最外面的级别。如果多个级别获得通过,应包含元组。
levels︰ 列表的序列,默认为无。具体水平 (唯一值) 用于构建多重。否则,他们将推断钥匙。
names︰ 列表中,默认为无。由此产生的分层索引中的级的名称。
verify_integrity︰ 布尔值、 默认 False。检查是否新的串联的轴包含重复项。这可以是相对于实际数据串联非常昂贵。
副本︰ 布尔值、 默认 True。如果为 False,请不要,不必要地复制数据。
例子:1.frames = [df1, df2, df3]
​ 2.result = pd.concat(frames)

2、设置索引列

df_inner.set_index('id')

3、按照特定列的值排序:

df_inner.sort_values(by=['age'])

4、按照索引列排序:

df_inner.sort_index()

5、如果prince列的值>3000,group列显示high,否则显示low:

df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')

6、对复合多个条件的数据进行分组标记

df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1

7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size

pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size'])

8、将完成分裂后的数据表和原df_inner数据表进行匹配

df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)

五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。

1、按索引提取单行的数值

df_inner.loc[3]

2、按索引提取区域行数值

df_inner.iloc[0:5]

3、重设索引

df_inner.reset_index()

4、设置日期为索引

df_inner=df_inner.set_index('date') 

5、提取4日之前的所有数据

df_inner[:'2013-01-04']

6、使用iloc按位置区域提取数据

df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列

7、适应iloc按位置单独提起数据

df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列

8、使用ix按索引标签和位置混合提取数据

df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据

9、判断city列的值是否为北京

df_inner['city'].isin(['beijing'])

10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来

df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])] 

11、提取前三个字符,并生成数据表

pd.DataFrame(df_inner['category'].str[:3])

六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。

1、使用“与”进行筛选

df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2、使用“或”进行筛选

df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age']) 

3、使用“非”条件进行筛选

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']) 

4、对筛选后的数据按city列进行计数

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

5、使用query函数进行筛选

df_inner.query('city == ["beijing", "shanghai"]')

6、对筛选后的结果按prince进行求和

df_inner.query('city == ["beijing", "shanghai"]').price.sum()

七、数据汇总
主要函数是groupby和pivote_table

1、对所有的列进行计数汇总

df_inner.groupby('city').count()

2、按城市对id字段进行计数

df_inner.groupby('city')['id'].count()

3、对两个字段进行汇总计数

df_inner.groupby(['city','size'])['id'].count()

4、对city字段进行汇总,并分别计算prince的合计和均值

df_inner.groupby('city')['price'].agg([len,np.sum, np.mean]) 

八、数据统计
数据采样,计算标准差,协方差和相关系数

1、简单的数据采样

df_inner.sample(n=3) 

2、手动设置采样权重

weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights) 

3、采样后不放回

df_inner.sample(n=6, replace=False) 

4、采样后放回

df_inner.sample(n=6, replace=True)

5、 数据表描述性统计

df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置

6、计算列的标准差

df_inner['price'].std()

7、计算两个字段间的协方差

df_inner['price'].cov(df_inner['m-point']) 

8、数据表中所有字段间的协方差

df_inner.cov()

9、两个字段的相关性分析

df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关

10、数据表的相关性分析

df_inner.corr()

九、数据输出
1.分析后的数据可以输出为xlsx格式和csv格式1、写入Excel

df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc') 

2、写入到CSV

df_inner.to_csv('excel_to_python.csv') 

十、数据可视化

  1. 数据的可是化,用柱状图,扇形图,折线图来进行展示,更加直观的展现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值