测评qwen 、glm ,deepseek的模型 对垂直领域的能力的支持情况对比

前言:

​ 在写这篇文章的时候,我也看了许多测评的文章,总觉得差点意思,都是对通用能力的测评,或者是垂直领域的coder 或者是math能力,就不太适用于我目前的项目,对于任何一个公司开发项目肯定是数据是非常核心的,不能说去直接调用市面给用户使用的大模型的api,需要部署本地大模型进行使用。我的思路,通过本地部署大模型,通过开发平台进行对垂直领域的回答,把chatGPT作为专家模型,进行对比,最后选出参数合适,领域知识全面的模型进行使用,引入项目当中去。

一、模型的测评平台搭建

​ 通过开源项目Open_webUI和Ollama集成进行测试的项目地址我放到了下面

https://github.com/open-webui/open-webui

Download Ollama on macOS

1.Docker desktop的安装

1.1 Docker desktop下载

网址:https://www.docker.com/products/docker-desktop/

进入网址后:点击Download Docker Desktop,我这里是windows系统,可以选择“Download for Windows - AMD64” 和 “Download for Windows - ARM64”

主要有以下区别

  1. “Download for Windows - AMD64” 是针对 64 位的 AMD 处理器架构设计的软件版本。

    • AMD64 架构在个人电脑领域广泛应用,具有强大的性能和广泛的软件兼容性。它能够处理大量的数据和复杂的计算任务,适用于各种高性能需求的场景,如游戏、图形设计、视频编辑等。
    • 很多主流的软件和游戏都针对 AMD64 架构进行了优化,以充分发挥其性能优势。
  2. “Download for Windows - ARM64” 则是针对 ARM64 架构的版本。

    • ARM64 架构主要用于移动设备和一些低功耗的计算设备,如智能手机、平板电脑和部分轻薄笔记本电脑。近年来,随着技术的发展,ARM64 架构也开始在桌面级电脑市场崭露头角。

    • ARM64 架构的特点是功耗低、续航能力强,适合对移动性要求较高的用户。

      我这里选择的是Download for Windows - AMD64,你根据你的需要进行选择即可

下载完成后你的目录就会有.exe的应用程序

具体的Docker desktop的安装不做过多的赘述,点击下一步下一步安装即可,安装好之后,打开软件主界面是:(这里我调整了主题是暗色系,正常是白色)

我们在 CMD 终端上看。

至此,Docker Desktop 安装告一段落,接下来就是在 安装Ollama平台和Open_webUI

2.Ollama的本地部署

进入网址:Download Ollama on macOS 根据你的需求进行下载即可,我这里直接下载的是windows版本,下载完成后也是在目录里出现了一个exe的文件,点击下一步进行安装即可

ollama部署完成后我们继续进入官网https://ollama.com/,搜索栏进行搜索选择你想用的模型

<think>好的,用户想要了解国内各家公司的AI大模型排名。首先,我需要确定用户的需求是什么。他们可能是在做市场调研,或者在选择合作伙伴,也可能是学术研究。不管怎样,用户需要的是一个综合的排名,涵盖主要公司和他们的模型。 接下来,我需要回忆国内有哪些主要的公司推出了大模型。百度、阿里、腾讯、华为这些大厂肯定有。然后是字节跳动、科大讯飞、商汤科技、智谱AI、MiniMax、零一万物等。可能还有一些初创公司,但用户可能更关注知名度高的。 然后,排名的依据是什么?通常包括技术能力、应用场景、商业化程度、开源情况、创新能力等。但用户可能想要一个综合的排名,而不是分项评估。不过直接说排名可能有主观性,需要说明这一点。 我需要先列出每个公司的模型,比如百度的文心一言,阿里的通义千问,腾讯的混元,华为的盘古,字节的云雀,讯飞的星火,商汤的日日新,智谱的GLM,MiniMax的ABAB,零一万物的Yi系列,还有百川智能和深度求索的模型。 接下来,按什么顺序排列?可能需要根据技术实力、市场影响力、应用范围来排序。百度、阿里、腾讯、华为这些大厂可能在前列,但讯飞、商汤这些专注于AI的公司也有竞争力。字节作为新入局的,但资源多,可能排名也不低。另外,像智谱AI这样的初创公司,虽然成立时间不长,但技术上有亮点,比如GLM-4。 需要注意的是,排名可能因评价标准不同而变化,比如有的模型在特定领域表现好,有的在商业化上更成功。此外,开源模型和闭源模型也有区别,比如百川和深度求索的开源模型可能在开发者中更受欢迎。 还要考虑最新动态,比如最近几个月有没有新模型发布,或者性能提升。比如讯飞的星火大模型3.5可能在某些评测中表现不错,而华为的盘古强调B端应用,可能在企业级市场有优势。 另外,用户可能想知道这些模型的特点,比如多模态能力、参数规模、应用场景等。所以在介绍每个公司时,需要简要说明其模型的特色和优势。 可能还需要提到政策和数据安全的影响,国内模型更注重中文环境和本土化需求,这也是一个优势点。 最后,要避免绝对化的排名,而是给出一个分档,比如第一梯队、第二梯队,或者按领域划分,这样更客观。同时提醒读者排名是动态变化的,可能存在主观因素,建议参考第三方评测。 总结一下,我的回答结构应该是:先说明排名的主观性和动态性,然后分公司介绍其模型和特点,最后给出一个分档排名,并建议参考具体需求选择模型。</think>国内AI大模型的竞争格局目前处于快速发展阶段,各家公司在技术能力、应用场景和商业化进展上各有侧重。由于评价标准不同(如技术性能、生态布局、行业影响力等),以下排名综合了技术实力、市场声量及实际应用情况,仅供参考(截至2024年7月): --- ### **第一梯队(综合实力领先)** 1. **百度·文心一言(ERNIE Bot)** - 优势:依托搜索引擎数据和多年NLP技术积累,多模态能力突出,已迭代至4.0版本,覆盖搜索、内容创作、企业服务等领域。 - 生态:通过“文心大模型”开放平台赋能千行百业,商业化落地广泛。 2. **阿里云·通义千问(Qwen)** - 优势:参数规模达万亿级,开源版本(如Qwen-72B)受开发者关注,与阿里云生态深度整合,在电商、金融场景表现突出。 - 动态:通义2.5版本强化逻辑推理和长文本处理能力。 3. **科大讯飞·星火大模型(Spark)** - 优势:专注教育、医疗等垂直领域,语音交互能力国内领先,星火3.5版本在多项中文评测中排名前列。 - 应用:已落地智慧课堂、医疗辅诊等场景。 --- ### **第二梯队(技术突破/垂直领域领先)** 4. **字节跳动·云雀(Lark/Doubao)** - 优势:依托抖音、头条的海量数据,擅长内容生成与推荐,C端产品“豆包”用户增长迅速。 5. **华为·盘古大模型** - 优势:聚焦B端工业场景(气象预测、矿山调度等),联合昇腾AI生态,强调行业解决方案而非通用对话。 6. **智谱AI·GLM模型** - 优势:清华系团队背景,GLM-4在多语言、代码生成能力突出,开源生态活跃(ChatGLM系列)。 7. **商汤科技·日日新(SenseNova)** - 优势:计算机视觉技术加持,多模态生成(如视频)能力较强,布局智慧城市、自动驾驶等场景。 8. **MiniMax·ABAB大模型** - 优势:聚焦AIGC赛道,旗下“海螺AI”在长文本生成和拟人化交互体验上有特色。 --- ### **第三梯队(快速追赶/细分赛道)** 9. **零一万物·Yi系列** - 亮点:李开复团队推出,Yi-34B曾登顶HuggingFace开源榜,长上下文处理能力突出。 10. **百川智能·Baichuan** - 亮点:王小川团队主导,Baichuan2开源模型在中文数学、代码任务表现优异。 11. **深度求索·DeepSeek** - 亮点:专注模型轻量化,DeepSeek-MoE架构在推理成本控制上有创新。 12. **昆仑万维·天工(Skywork)** - 动态:3.0版本支持万字上下文,重点布局海外市场。 --- ### **评价维度补充** - **开源影响力**:智谱AI(ChatGLM)、阿里(Qwen)、零一万物(Yi)的开源模型在开发者社区接受度较高。 - **垂直领域**:医疗(医联的MedGPT)、金融(恒生的Warren)、法律(幂律的ChatLaw)等赛道涌现专业模型。 - **政策支持**:北京、上海、深圳等地政府主导的联合实验室(如北京通用AI研究院)正推动国产算力与模型协同发展。 --- ### **争议与挑战** 1. **同质化竞争**:多数大模型在通用能力上趋同,差异化多依赖数据场景而非技术代差。 2. **算力瓶颈**:英伟达芯片限制下,国产算力(华为昇腾、寒武纪等)的适配仍需时间。 3. **商业化路径**:除云服务、API调用外,C端付费习惯尚未成熟,盈利模式待探索。 建议结合具体场景需求(如开源/闭源、中文理解、行业适配)选择模型,可参考权威评测(如SuperCLUE、C-Eval)的最新结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值