您打开笔记本或脚本来分析一些数据。
你想要*
导入 pandas
,也许*是 *seaborn
,也许*是requests
**,但现在你要在接下来的 10 分钟内决定:
- 我应该创建一个新的
venv
吗?
- 我应该运行
pip install
**,还是poetry add
**?
- 那个项目的*
requirements.txt
*又去了哪里?
您只是想运行一个脚本。现在,您正在执行环境分类。
数据科学家们,欢呼吧。有一个新工具可以解决所有这些问题 — 它叫做 uv。
什么是紫外线?
uv 是下一代 Python 工具,它:
想想看:pip
+ poetry
+ pyenv
+ virtualenv
,减去痛苦。
让数据科学更轻松的 5 个 UV
技巧
1. 运行任何脚本,使用 deps,无需设置
Copyuv run --with pandas seaborn myscript.py
Copyuv