精益求精 | NHANES发文思路:得到阳性先别急,深挖能发更好的文章

旧时王谢堂前燕,飞入寻常百姓家,在过去,痛风被称为帝王病,只发生在富贵人家,而随着物质条件变好了,这只堂前燕也飞入了寻常百姓家。痛风的病因是尿酸石结晶在关节内淤积诱发炎症。先前的研究表明:血清尿酸水平(SUA)升高可能是甘油三酯血症(HTG)的危险因素,但流行病学证据并不充足,本期推文我们要一起学习一篇通过NHANES数据补充这一观点证据的文章。

2023年7月,一篇题为:The association between serum uric acid and hypertriglyceridemia: evidence from the national health and nutrition examination survey (2007-2018)的研究论文发表于《Front Endocrinol (Lausanne)》,本文为中国学者写作,文章属于中科院分区医学二区,2023年IF=5.2

这项研究利用美国营养健康(NHANES)的数据,通过多种方法,研究了美国成年人血清尿酸水平升高与甘油三酯血症之间的关系。结果表明,在美国成人中,SUA和HTG之间存在正相关。考虑到 SUA 可能是 HTG 的危险因素,被诊断为 HTG 的患者应优先考虑 SUA 的日常管理,作为其综合护理的一部分。

0a8cdd49f7ff87d347d262633b6ed62e.png

摘要与主要结果

一、摘要

背景:越来越多的证据表明,血清尿酸(SUA)升高可能是高甘油三酯血症(HTG)的危险因素。然而,SUA和HTG之间关联的流行病学证据有限。本文旨在利用国家健康和营养检查调查(NHANES)(2007-2018)数据库的数据来提供更多证据。

方法:这项横断面研究使用了2007-2018年参与NHANES的10027名成年人的数据。我们将暴露变量设计为SUA,将结局变量设计为HTG。协变量包括人口统计学、问卷、实验室和检查信息。采用加权逻辑回归和亚组分析探讨SUA与HTG之间的独立关联。此外,还进行了相互作用测试以评估地层差异。应用广义加性模型(GAM)、平滑曲线拟合和阈值效应分析对非线性关系进行了研究。

结果:共纳入10027名受试者,其中HTG受试者3864名,非HTG受试者6163名。在完全调整混杂因素后,加权多元逻辑回归模型显示,当每个单位log2-SUA增加时,HTG的风险增加了77%。在四分位数(Q)组中,log2-SUA升高与HTG发展风险之间也存在正相关(Q1 OR:1.00;第二季度或:1.17 [95%置信区间:0.95,1.45];第三季度或:1.43 [95%置信区间:1.16,1.78];第 4 季度或:1.68 [95% 置信区间:1.36,2.08]。各地层亚组分析结果保持一致,SUA与HTG呈强正相关。相互作用试验显示,log2-SUA和HTG之间的这种正相关不依赖于身体活动(PA),性别,BMI,吸烟状况,酒精摄入量,高血压和糖尿病(相互作用均为p>0.05)。参与者的年龄可能会影响SUA和HTG之间关联的强度(相互作用p<0.05)。

结论:在美国成人中,SUA和HTG之间存在正相关。考虑到 SUA 可能是 HTG 的危险因素,被诊断为 HTG 的患者应优先考虑 SUA 的日常管理,作为其综合护理的一部分。

二、研究结果

1. 研究人群的基线资料

表 1 显示了从 2007 年至 2018 年 NHANES 中选择的参与者的加权基线特征,并按 HTG 的存在进行分层。该分析包括 3,864 名患有 HTG 的参与者。HTG组的平均年龄为50.95±22.04岁,其中男性占58.47%,女性占41.53%。相比之下,非 HTG 组由 6,163 名参与者组成,平均年龄为 49.15 ± 30.04 岁,其中 44.56% 为男性,55.44% 为女性。

HTG 组和非 HTG 组在年龄、性别、种族、教育水平、PIR、婚姻状况、BMI、饮酒、吸烟状况、PA、高血压、胆固醇处方、糖尿病、PFC、ALT、AST 方面观察到显着差异、SUA、肌酐、血尿素氮和总胆固醇(所有 p < 0.05)。

9a10af0755fbc24d4762019c5c73b050.png

69572c335e638c3ec7cb8ef4101e2d29.png

2.SUA 与 HTG 之间的关联

表 2 显示 SUA 与 HTG 风险之间的关联。

SUA 和 HTG 之间观察到显著的正相关。在模型 1 中,比值比 (OR) 为 3.40(95% CI:2.84-4.06),表明存在显着关联。模型 2 还根据年龄、性别、种族、BMI、教育水平、PIR、PA、久坐时间、高血压、糖尿病、肌酐、血尿素氮、总胆固醇、ALT、AST、吸烟状况、饮酒和 PFC 进行了调整显示出正相关(OR = 3.17,95% CI:2.62-3.84)。此外,在模型3中,经过充分调整后,仍然观察到SUA和HTG之间呈正相关(OR = 1.77,95% CI:1.44-2.18)。

为了进一步了解 SUA 和 HTG 之间的关系,对数转换的 SUA 被分为四分位数。在完全调整的模型 3 中,比较最高四分位数 (Q4) 与最低四分位数 (Q1) 时,OR 为 1.68(95% CI:1.36-2.08),表明较高的 SUA 水平与 HTG 之间存在稳定的正相关关系。

1919b0e619df82860d3e23956513886b.png

3.亚组分析结果

在基本分析后,我们进一步进行亚组分析,以评估 SUA 和HTG之间关联的稳健性。还进行了交互测试来评估不同变量的影响(补充材料 2)。亚组分析结果显示,不同亚组中 SUA 和 HTG 之间一致呈正相关,表明相关性的稳健性。值得注意的是,在性别、BMI、吸烟状况、饮酒、高血压、糖尿病和 PA 方面没有观察到显着的相互作用,表明这种关联并不依赖于这些变量(所有相互作用的 p > 0.05)。

然而,年龄被发显著影响 SUA-HTG 关联的强度(交互作用的所有 p < 0.05)。结果表明,与 60 岁及以上的参与者相比,60 岁以下的参与者面临更高的风险,比值比为 2.47(95% CI:1.96-3.12)。这表明年龄在改变 SUA 和 HTG 之间的关联中发挥着作用,年轻个体表现出更强的关联。

6171cba814663384edcf158d3ce9e612.png

5eb2345cbe2acdc4dde569be1a8a6c27.png

4.非线性分析

提示了 SUA 和 HTG 之间的非线性关系,如图 2 所示的 GAM 和平滑曲线拟合的结果证明的那样。对数似然比测试显示,比较线性回归模型时,p 值小于 0.001到两分段线性回归模型,表明两分段线性回归模型对数据提供了更好的拟合。

c60ee2d33ab3fff9b22343267412b0fd.png

表 3 使用两段线性回归模型和递归算法得出了结果。SUA 和 HTG 之间 U 形关联的拐点被确定为 log2-SUA 的 7.86 umol/L。在拐点左侧,效应大小(log2 转换)为 0.76(95% CI:0.45,1.28),p 值为 0.30,表明关联性不强。但在拐点右侧,SUA 与 HTG 呈显著正相关。效应大小(log2 转换)为 2.16(95% CI:1.82,2.56),p 值 <0.001,表明较高的 SUA 水平与 HTG 之间的关联性很强。

34da47a96e40a43e38add357f373af01.png

设计与统计学方法

一、研究设计

P2007-2018 年国家健康和营养检查调查的美国成年参与者。

I:暴露因素为血清尿酸(SUA)。

O:结局:高甘油三酯血症(HTG)。

S:横断面研究。

二、统计方法

1.前言,所有统计分析均根据疾病预防控制中心指南进行。考虑到复杂的多阶段整群调查设计,使用了 NHANES 生成的抽样统计分层、聚类和权重,以确保结果可推广到美国全人群。

ab32313e3f530e51cf5f7d197bb9984b.png

2.基线资料分析以及偏态数据log转换,连续变量以平均值和标准差(SD)表示,而分类变量以百分比表示。为了解决 SUA 数据的右偏分布,应用 log2 变换进行回归和亚组分析。

7d8ed7d6045be100ca7a38b4c35896f2.png

3.差异性分析,统计分析包括四个主要步骤,旨在检查所选参与者中 SUA 水平和 HTG 之间的关联。首先,根据临床指南将参与者的 TG 水平分为 HTG 组和非 HTG 组。使用分类变量的卡方检验和连续变量的加权学生 t 检验来评估这些组之间的差异。

5204bfe4d4739925d9704dfb9a9baaa5.png

4.建立多元逻辑回归模型,第二步,采用加权多元逻辑回归模型来检验三个模型中 SUA 和 HTG 之间的独立关联。模型 1 不包含任何协变量调整。模型 2 根据性别、年龄和种族进行了调整。模型 3 包括对所有协变量的调整,包括年龄、性别、种族、教育水平、久坐时间、AST、ALT、肌酐、血尿素氮、总胆固醇、PIR、体重指数 (BMI)、吸烟状况、酒精摄入量、体质活动(PA)、高血压、糖尿病和 PFC。此外,SUA从连续的变量转换为分类变量 (Q) 以进行进一步分析。

210fe545f173470eecad323f5650d138.png

ccfce64b566ac5b26424628198153054.png

5.进行亚组分析以及非线性分析,考察不同亚组对结果的影响。采用交互作用测试来探索这些亚组之间潜在的异质性。此外,还利用 GAM、平滑曲线拟合和阈值效应分析来更详细地研究 SUA 和 HTG 之间的非线性关系。

f688eb3ea41f8829c816f531ae4ce70c.png

6.补充说明,如果两侧值 P < 0.05,则拒绝原假设。所有分析均使用 Empower 软件(www.empowerstats.com;X&Y Solutions, Inc.,波士顿马萨诸塞州)和 R 软件(版本 4.1.2;http://www.R-project.org,R 统计计算基金会,维也纳,奥地利)。

aaec2ad4513676ae291a71a2b734a1bc.png

小感悟

本期介绍的是一篇二区文章,5.2分,高分文章。

文章的研究方法如下:先对基线资料进行分析再差异性分析,随后建立回归模型,回归模型也采用了传统三件套:未校正,部分校正以及完全校正三种模型,再进行亚组分析加强结果稳健性,最后进一步进行非线性分析来讨论两者非线性关系。文章在进行多元logistics时,细节的把自变量以连续和分类的形式分别建立模型,为接下来的非线性分析做了铺垫,通过后期的非线性分析确认了尿酸水平需要达到一定水平,才会提升疾病发生风险。模型拟合的非常完美。

写文章,重点在于出结果,还要往细了挖。这篇文章统计在做多元逻辑回归时就已经得出了结果,倘若文章到此戛然而止,就很难在高质量期刊上发表了。这篇文章的新在于细,得到更科学的结论,所谓精益求精。

3b6603850fec1e0049576d992fdc0909.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值