快来Charls抄作业!中国学者用了一下新指标,又发一区(IF=9.3)

e7c83d5180c9eb24d2c82fdaa4735e00.png

最近的Charls数据库风头正盛,可谓是真正的“国货之光”人的!用别人的数据进行二次挖掘,找好选题下载数据,加上统计学方法得出结果就能写文章,这谁能不心动?今天分享的这篇文章就是用Charls数据库,用上一个新指标-胰岛素抵抗,就又发文一区!

2024年6月6日,中国学者用Charls数据库做了一项研究,在期刊《Cardiovascular Diabetology医学一区top,IF=9.3发表了题为:Insulin resistance assessed by estimated glucosedisposal rate and risk of incident cardiovascular diseases among individuals without diabetes: findings from a nationwide, population based, prospective cohort study”的研究论文,近年来的研究表明,胰岛素抵抗(IR)与心血管疾病(CVD)的发生有关,而葡萄糖处置率(eGDR)被认为是胰岛素抵抗的可靠替代指标。本研究旨在探讨eGDR与非糖尿病参与者CVD发病率的关系。

d5d2baf8003a5f6ef04cb45fbff89eae.png

本公众号回复“ 原文”即可获得文献PDF等资料,如果需要Charls公共数据库挖掘学习与指导,请联系郑老师团队,详情可添加助教微信:aq566665

胰岛素抵抗(IR)作为多种慢性疾病发病的共同土壤,危害巨大。近年来又有多项研究表明,胰岛素抵抗(IR)与心血管疾病(CVD)的发生有关。但先前大多数研究都涉及糖尿病患者,可能会导致结果不准确。

主要研究结果

1.研究设计

本研究采用了中国健康与养老追踪调查(Charls)数据库2011-2020年的数据,经过纳排,最终纳入了5512名年龄>45岁没有心血管疾病和糖尿病,但基线时有完整的eGDR数据符合条件的参与者。

  • 生化参数包括:高敏C反应蛋白(hsCRP)、血尿素氮(BUN)、血清肌酐、糖化血红蛋白A1c(HbA1c)和血脂谱。

  • 高血压定义为:基于医生诊断和/或任何抗高血压药物使用和/或血压≥140/90mmHg的自我报告的高血压。

  • 糖尿病定义为:依据医生自我报告的诊断、降糖药物的使用或FBG≥126mg/dL和/或基线时HbA1c水平≥6.5%。

  • 肾脏疾病定义为:自我报告的医生诊断和估计肾小球滤过率<60ml/min/1.73m2 。

  • 体重指数(BMI)计算公式为:BMI(kg/m2 )=体重/身高2, BMI ≥ 28 kg/m2 为肥胖。

  • 本研究的暴露是基线时的 eGDR。eGDR (mg/kg/min) = 21.158 − (0.09 × 腰围) − (3.407 × 高血压) − (0.551 × HbA1c) [腰围 (cm)、高血压 (yes = 1/no = 0) 和 HbA1c (%)]。

主要结局是心血管疾病,包括心脏病和中风。

259b458f868d572c2a0cf7e504f2bdae.png

2.基线数据

该研究共纳入 5512 名参与者,其中女性占54.1%,并根据 eGDR 的四分位数 (Q) 进一步分为四个亚组。

  • 平均年龄、女性比例、收缩压、舒张压、BMI、腰围、血红蛋白水平、HbA1c、TC、TG、LDL、UA 和 hsCRP 水平均随 eGDR 的增加而降低(均 P < 0.001)。

  • 然而,eGDR水平较高的人往往生活在农村和南部地区,吸烟的占比较高。

  • 在eGDR第四分位数,酒精消费比例最高(42.7%)。

685b94924977bceed0dcfed63ad7859d.png

3.观察性研究发现eGDR与CVD疾病之间存在关联

eGDR和CVD之间的剂量-反应曲线如下图所示, RCS曲线表明,无论是否调整协变量,eGDR 与 CVD、心脏病和卒中发病率之间存在显着的线性关系(总体P均为 < 0.001,非线性P > 0.05)。

  • 在完全调整协变量(模型 3)后,eGDR 每增加 1.0 SD,心血管疾病风险降低 17%(HR:0.83,95% CI:0.78 − 0.89),心脏病风险降低 13%(HR:0.87,95% CI:0.81 − 0.94),卒中风险降低 30%(HR:0.63 − 0.78)。

33d976770e1ee6fad74cda30434914fb.png

Kaplan-Meier生存曲线表明,eGDR较高的个体CVD、心脏病和卒中的累积发病率较低。

b6eb7c06bfffda94bf1b8f77607d22e5.png

使用Cox比例风险回归模型得出的结果与先前一致。

8564c96838bb604c6abf1440e9705178.png

模型1:未调整;

模型2:调整了年龄、性别、农村居住、婚姻状况、教育程度、吸烟、饮酒状况;

模型3:在模型2的基础上进一步调整地区、TC(总胆固醇)、HDL(高密度脂蛋白)、TG(甘油三酯)、LDL(低密度脂蛋白)、BUN(血尿素氮)、UA(尿酸)、hsCRP(高敏c反应蛋白)、血红蛋白、慢性肾脏疾病、肥胖;

a 每1000人年随访的发生率。

dd8d75d5b63807415bb04bf5d4dfde39.png

4.亚组分析结果

研究团队使用亚组分析,用于评估 eGDR(连续和分类)与 CVD 发病率之间的关联是否被预先指定的亚组所改变。

  • 在大多数亚组中,eGDR与CVD发病率之间的关系与主要结果一致。eGDR 对 CVD 发病率的预测性能仅通过吸烟亚组进行修改(相互作用的 P = 0.012)。

34c1e0c8a918c6a3a52b73036a00d377.png

*P<0.05, **P<0.01,  ***P<0.001

同时,在这些亚组中,未观察到eGDR四分位组与不同终点发生率之间的显著交互作用。

9b58d4633a30e7ead0ecd11204bc108e.png

5.纳入eGDR评估其对的CVD预测价值

基于Model 3,研究团队构建了基本模型(包括年龄、性别、农村居住地、婚姻状况、教育程度、吸烟情况、饮酒状况、地区、TC、HDL、TG、LDL、BUN、UA、hsCRP、血红蛋白、慢性肾脏病和肥胖)。

  • 在添加eGDR后,显著优化了CVD(C统计量:0.671 vs. 0.608,P < 0.001)、心脏病(C统计量:0.671 vs. 0.611,P < 0.001)和卒中(C统计量:0.685 vs. 0.620 P < 0.001)基本模型的预测能力。

  • 此外,心血管疾病、心脏病和卒中的所有NRI和IDI均显著(均P<0.001)。

070cd09c2e33cd66851d99caaefaab3f.png

a2323246dfc895983a34562abd232acd.png

尽管将高血压纳入基本模型后,缺失增强了其对心血管结局的预测能力,但与纳入 eGDR 的相比,它的强度较差。

统计方法

本文使用的统计学方法主要分为以下几部分:

1.观察性研究

  • 分别使用方差分析 Kruskal-Wallis H 检验对正态分布数据和偏态分布数据进行基线数据比较。

  • 使用eGDR每个四分位数的中值进行了趋势检验

  • 采用多重插补法对缺失值进行插补。

2.暴露与结局之间的关联性分析

  • 生成 Kaplan-Meier 曲线来说明 CVD 的累积发病率,并使用对数秩检验比较差异。

  • 拟合三个 Cox 比例风险模型以估计 eGDR 和 CVD 之间的风险比 (HR) 以及相应的 95% 置信区间 (CI)。

  • 使用Schoenfeld残差检验检查模型中每个变量的比例风险假设,未观察到违规行为。

  • 为了研究eGDR与CVD发生率的剂量-反应关系,构建了基于Cox回归模型的RCS曲线

3.评估eGDR对CVD发病率的预测价值

  • 建立RCS曲线来评估eGDR对CVD发病率的预测价值,并采用C统计量进行量化。

  • 为了进一步估计基本模型之外的预测能力,计算了净重分类改进(NRI)综合歧视改善(IDI)指数。

4.亚组分析

  • 进行亚组分析以评估 eGDR(连续和分类)对几个亚组 CVD 发病率的影响,包括年龄(< / ≥ 60 岁)、性别(男性/女性)、吸烟(是/否)和饮酒(是/否)。

5.敏感性分析

进行了几项敏感性分析,以评估主要发现的稳健性。

  • 首先,在血糖状态正常的参与者中重复分析;

  • 其次,根据高血压(130/80 mm Hg)重新定义了eGDR;

  • 最后,在非糖尿病参与者中检查 eGDR 与 CVD 的关联的结果。

本公众号回复“ 原文”即可获得文献PDF等资料,如果需要Charls公共数据库挖掘学习与指导,请联系郑老师团队,详情可扫码添加助教微信:

后   记

好的选题非常关键,这个Charls数据库的新指标可要好好把握。本公众号去年就介绍了一篇关于温州医科大学的学者使用Nhanes+胰岛素抵抗(IR)发表SCI的文章。

往期回顾:

NHANES | 不同胰岛素抵抗替代物与育龄女性不孕症之间的关联

本文的统计学思路很流畅,先进行观察性研究,再用Kaplan-Meier 曲线来说明 CVD 的累积发病率,同时拟合三个 Cox 比例风险模型来估计 eGDR 和 CVD 之间的HR以及相应的 95% CI,RCS曲线用于研究eGDR与CVD发生率的剂量-反应关系。同时,RCS曲线也来评估eGDR对CVD发病率的预测价值。最后进行亚组和敏感性分析

别再守着金矿不会用啦!数据库虽好,但发文不仅要懂数据统计方法,还要精通热门选题。如果你也想用Charls发文,或者在分析过程中遇到困难,欢迎加入郑老师的课程!就算是科研小白也能轻松掌握!

9018f24423d50b217df7c0d46a529775.png

本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发文后退款:2024-2025年科研统计课程介绍

二、数据分析服务

浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情:

课题、论文、毕业数据分析 

 临床试验设计与分析 公共数据库挖掘与统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值