MIMIC联合机器学习成发文大头?中国学者一周发了六篇!| MIMIC-IV数据库周报(01.04~01.10)...

9528f11fb9eee769316471d03cb134c1.png

重症医学数据库(MIMIC)是由计算生理学实验室开发的公开数据集,其中包括与数千个重症监护病房入院相关的去识别化健康数据,致力于推动临床信息学、流行病学和机器学习的研究。

MIMIC数据库于2003年在美国国立卫生研究院的资助下,由美国麻省理工学院计算生理学实验室、美国哈佛医学院贝斯以色列女执事医疗中心(Beth Israel Deaconess Medical Center,BIDMC)和飞利浦医疗公司共同建立。

MIMIC 数据库目前已经产生了MIMIC Ⅱ、Ⅲ、Ⅳ三个版本,包含了BIDMC所有内外科ICU患者的数据。MIMIC Ⅲ数据库收集了BIDMC 2001年6月至2012年10月ICU收治的53423例成年患者数据和2001年至2008年收治的7870例新生儿重症患者数据。MIMIC Ⅳ数据库在MIMIC Ⅲ的基础上做了一些改进,包括数据更新和部分表格重构,收集了2008至2019年BIDMC收治的超过19万名患者45万次住院记录的临床数据。

数据库收集了三类数据:临床数据,从ICU信息系统和医院档案中汇总;高分辨率生理数据,从床边监护仪获得;死亡数据,来自社会保障局死亡档案。

a357f033479eec4065e4dd3e27089857.png

2025.01.04-2025.01.10PubMed数据库“标题/摘要:MIMIC-IV OR MIMIC-III”搜索发现,共发表18篇MIMIC-IV论文。其中7篇二区

中国学者文章

1.中国学者文章介绍(一)

89d553151a83c6106cb73b661b4beec4.png

文章题目:两种对治疗有不同反应的心脏骤停亚表型的机器学习推导。

研究目的心脏骤停(CA)以其异质性为特征,对患者管理提出了挑战。本研究旨在确定CA患者的临床亚表型,以帮助患者分类、预后评估和治疗决策。

数据来源:在本研究中,从重症监护医学信息市场IV (MIMIC-IV) 2.0数据库中提取综合数据。

方法:我们排除了18岁以下的患者,未首次入住重症监护病房(ICU)的患者,或在ICU治疗少于72小时的患者。总共选择了57个与CA患者相关的临床参数进行分析。这些数据包括人口统计数据、生命体征和实验室参数。经过广泛的文献回顾和专家咨询,关键因素如温度(T)、钠(Na)、肌酐(CR)、葡萄糖(GLU)、心率(HR)、PaO2/FiO2比(P/F)、血红蛋白(HB)、平均动脉压(MAP)、血小板(PLT)和白细胞计数(WBC)被确定为最重要的聚类分析。采用共识聚类分析来检查icu入院后前24小时内这些常规临床参数的平均值,以对患者进行分类。此外,使用多变量logistic和Cox回归分析评估不同CA亚表型患者的住院死亡率和28天死亡率。

结果:应用排除标准后,纳入CA患者719例,中位年龄67.22岁(IQR: 55.50 ~ 79.34),其中男性63.28%。分析描述了两种不同的亚表型:亚表型1 (SP1)和亚表型2 (SP2)。与SP1相比,SP2患者的P/F、HB、MAP、PLT和Na水平明显升高,但T、HR、GLU、WBC和CR水平较低,SP2患者的住院死亡率明显高于SP1 (SP2为53.01%,SP1为39.36%,P < 0.001)。两种亚表型的28天死亡率均持续下降,其中SP2下降更快。在校正潜在协变量后,这些差异仍然显著(校正OR = 1.82, 95% CI: 1.26-2.64, P = 0.002;Hr = 1.84, 95% ci: 1.40-2.41, p < 0.001)。

结论:通过分析ICU入院后24小时的常规临床数据,该研究成功地确定了CA的两种不同的临床亚表型。与SP2相比,SP1的特点是住院死亡率和28天死亡率较低。这种分化可以在定制患者护理、评估预后和指导CA患者更有针对性的治疗策略方面发挥关键作用。

02458e8eedb3e694741958d7f296ba01.png

2.中国学者文章介绍(二)

9d02e221bef576835d7bf04fcb4c86bc.png

文章题目:用于预测急诊分诊患者败血症风险的可解释机器学习。

研究目的该研究旨在利用结构化电子a病历(sEMR)和机器学习(ML)方法在紧急分诊中开发和验证脓毒症预测模型。目标是通过整合除生命体征外的综合分类信息来加强早期败血症筛查。

数据来源:这项回顾性队列研究使用了来自MIMIC-IV数据库的数据。

方法:模型1仅基于生命体征,模型2结合生命体征、人口统计学特征、病史和主诉。采用了8种ML算法,并使用AUC、F1 Score和校准曲线等指标评估模型性能。采用SHapley加性解释(SHAP)和局部可解释模型不可知论解释(LIME)方法增强模型可解释性。

结果:该研究包括189,617例患者,其中5.95%诊断为败血症。在大多数算法中,模型2始终优于模型1。在模型2中,Gradient Boosting的AUC最高,为0.83,其次是Extra Tree、Random Forest和Support Vector Machine(均为0.82)。

结论:SHAP方法为梯度增强算法提供了更易于理解的解释。与单独使用生命体征相比,使用sEMR和ML方法建立综合分诊信息的模型在分诊时预测败血症方面更有效。可解释的ML增强了模型的透明度,提供了脓毒症的预测概率,为早期脓毒症筛查提供了可行的方法,并帮助医疗保健专业人员在分诊过程中做出明智的决定。

2d8a2d007308d021ac8d535d0b54b5d0.png

3.中国学者文章介绍(三)

427d1f2c0b08c74a2c6c612c9ddb1cde.png

文章题目:缺血性脑卒中患者脓毒症风险评估的机器学习方法。

研究背景:缺血性脑卒中是一种严重的神经系统疾病,感染是其临床管理的一个重要方面。脓毒症是由感染引起的危及生命的器官功能障碍,是重症监护病房(ICU)最危险的并发症之一。目前,尚无模型能够预测缺血性脑卒中患者脓毒症的发生。本研究旨在利用机器学习技术,利用MIMIC-IV数据库的数据,开发缺血性卒中患者脓毒症的第一个预测模型。

数据来源:从MIMIC-IV数据库中纳入2238例首次入住ICU的成年缺血性脑卒中患者。关注的结果是脓毒症的发展。

方法:模型开发遵循TRIPOD指南。使用最小绝对收缩和选择算子(LASSO)回归进行特征选择,确定28个关键变量。多种机器学习算法,包括逻辑回归、k近邻、支持向量机、决策树和XGBoost,进行了训练和内部验证。对性能指标进行了评估,并选择XGBoost作为最优模型。SHAP方法被用来解释XGBoost模型,揭示了个体特征对预测的影响。该模型还部署在一个用户友好的平台上,以便在临床环境中实际使用。

结果:与其他模型相比,XGBoost模型在验证集中表现出优越的性能,曲线下面积(AUC)为0.863,提供了更大的净效益。SHAP分析确定了影响脓毒症风险的关键因素,包括第一天使用有创机械通气、体重过重、格拉斯哥昏迷量表言语评分低于3分、年龄和体温升高(>37.5°C)。已经开发了一个用户界面,使临床医生能够轻松访问和使用该模型。

结论:本研究开发了第一个基于机器学习的模型来预测缺血性脑卒中患者的败血症。该模型具有较高的准确性,具有作为临床决策支持工具的潜力,能够更早地识别高危患者,并促进预防措施,以降低该人群的脓毒症发病率和死亡率。

ff66f46ee8bcbf4b443936b9f64f4d65.png

4.中国学者文章介绍(四)

7c8e341851abf92fda58fe68114a9e1d.png

文章题目:基于可解释机器学习的重症监护病房患者急性肾损伤预测。

研究目的急性肾损伤(AKI)在重症监护病房(ICU)患者中具有致命风险,早期发现具有挑战性。本研究旨在建立ICU患者AKI提前24小时预测模型,帮助临床医生通过关键特征对患者进行早期监测。

数据来源:在本研究中,使用重症监护医学信息市场(MIMIC)数据库构建危重患者数据集。

方法:基于MIMIC-IV数据,采用5种机器学习算法构建预测模型,并通过多个模型评价指标选择最佳预测模型。使用MIMIC-III数据进行外部验证。我们使用SHapley加性解释(SHAP)对模型进行了可解释性分析,以阐明关键特征和决策机制。

结果:本研究共纳入18186例患者资料。结合校准曲线和决策曲线的分析表明,极限梯度增强(XGBoost)算法在5种算法中表现出较好的性能,在接收机工作特性曲线下的面积为0.88。基于XGBoost模型的可解释性分析显示,利尿剂使用、机械通气、血管加压剂使用、年龄和抗生素使用是模型最重要的决定因素。SHAP汇总图用于说明归因于XGBoost的前19个特性的效果。

结论:XGBoost算法能更准确地预测AKI的发生。对模型的解释性分析揭示了关键特征的机制,反映了患者之间的个体差异,为临床提供了重要参考。

5ebdf73c8c334ce904f5d108fddc1693.png

5.中国学者文章介绍(五)

d572582325625b32205e1324ddf9ce5e.png

文章题目:一个可解释的机器学习模型用于预测ICU呼吸机相关性肺炎患者的住院死亡率。

研究背景呼吸机相关性肺炎(VAP)是ICU常见的院内感染,与不良预后显著相关。然而,目前缺乏可靠和可解释的工具来评估VAP患者的住院死亡风险。本研究旨在建立一种可解释的机器学习(ML)预测模型,以加强对VAP患者住院死亡风险的评估。

数据来源:本研究从MIMIC-IV数据库的2.2和3.1版本中提取VAP患者数据,使用2.2版本进行模型训练和验证,3.1版本进行外部测试。

方法:采用Boruta算法进行特征选择,构建了14个ML模型。根据验证组和试验组的受试者工作特征曲线下面积(AUROC)、准确性、灵敏度和特异性确定最佳模型。采用SHapley加性解释(SHAP)分析整体可解释性和局部可解释性。

结果:共纳入1894例VAP患者,最终选择12个特征进行模型构建:24小时尿量、血尿素氮、年龄、舒张压、血小板计数、阴离子间隙、体温、碳酸氢盐水平、钠水平、体重指数、是否合并充血性心力衰竭和脑血管疾病。随机森林(RF)模型表现最好,内部验证的AUC为0.780,外部测试的AUC为0.724,优于其他ML模型和常见的临床评分系统。

结论:射频模型在预测VAP患者住院死亡风险方面具有稳健性和可靠性。开发的在线工具可以帮助临床医生有效地评估VAP院内死亡风险,支持临床决策。

2c3a92a485254459bd3adf425f22d02d.png

更多文章如下:

外国学者:

8589cedfe302b8cd67dbc765c41081a0.png

中国学者:

3b92a303c894b95f581abd1aee84c103.png

一个专门做公共数据库的公众号,关注我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值