【机器学习】Dify:AI智能体开发平台版本升级

 

一、引言

关于dify,之前力推过,大家可以跳转 AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署了解,今天主要以dify为例,分享一下如何进行版本升级。

二、版本升级

2.1 原方案

#首次部署:
git clone https://github.com/langgenius/dify
cd docker
docker compose up -d

#二次升级:
git checkout main
git pull origin main
cd docker
docker compose up -d

2.2 新方案

1、克隆项目、获取image名称和版本号

#首次部署
git clone https://github.com/langgenius/dify.git
cd docker 
#查看docker-compose.yaml中的image名称和版本号
awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq

2、针对每一个image,通过--platform指定linux/amd64/v4架构,pull拉取(务必指定与服务器匹配的架构!!!否则会将旧版本的image的tag附值为None,手动回退很麻烦!!!

 awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq | xargs  -n 1 docker pull  --platform  linux/amd64/v4

3、查看是否拉取成功

#查看是否拉取成功
docker images

4、将所有镜像打包至amd64-dify-images-0.6.10.tar

awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq | xargs  docker save -o amd64-dify-images-0.6.10.tar

5、上传至服务器,可以使用scp、rsync等

6、在服务器上将amd64-dify-images-0.6.10.tar内的所有镜像load到image库中,并查看运行情况

docker load -I amd64-dify-images-0.6.10.tar

docker images

7、采用docker compose up -d启动

docker compose up -d

三、总结

本文以dify为例,介绍多image镜像升级方法,希望得到您的三连支持! 

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

AI智能体研发之路-模型篇(十):【机器学习】Qwen2大模型原理、训练及推理部署实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

【AI大模型】Transformers大模型库(六):torch.cuda.OutOfMemoryError: CUDA out of memory解决

【AI大模型】Transformers大模型库(七):单机多卡推理之device_map

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig

### LM Studio Dify 使用指南 #### 安装与配置 为了使用LM Studio Dify,在开始之前,需要先安装Docker。Docker提供了跨平台的安装包,可以根据操作系统选择相应的安装方式进行安装[^3]。 #### 启动与初始化 启动LM Studio Dify可以通过命令行完成。确保已经正确安装并配置好Docker环境之后,可以拉取最新的镜像文件来部署应用程序: ```bash docker pull lmstudio/dify:latest ``` 接着通过如下命令启动容器: ```bash docker run -d -p 8080:8080 --name dify lmstudio/dify:latest ``` 这将会把服务暴露于本地端口`8080`上,允许用户访问Web界面进行进一步操作。 #### 功能特性概览 LM Studio Dify支持在笔记本电脑上完全离线运行大型语言模型(LLMs),包括但不限于Hugging Face上的ggml Llama、MPT和StarCoder模型[^1]。这意味着即使在网络连接不可用的情况下也能执行复杂的自然语言处理任务。 对于希望构建基于大语言模型的知识库问答系统的开发者来说,FastGPT是一个值得考虑的选择。该工具不仅能够提供开箱即用的数据处理功能,还简化了模型调用流程,并且兼容多种不同的预训练模型,使得开发过程更加高效便捷[^2]。 尽管上述描述主要针对FastGPT,但这些优势同样适用于理解如何利用LM Studio Dify来进行相似的任务——创建强大的AI驱动解决方案而无需依赖互联网连接。 #### 常见问题解答 - **Q:** 是否可以在没有网络的情况下正常使用? 是的,一旦完成了初始设置阶段,所有的计算都将发生在用户的设备内部,因此不需要持续性的在线状态即可享受完整的功能体验。 - **Q:** 支持哪些类型的机器学习模型? 主要集中在来自Hugging Face社区贡献的各种大规模预训练语言模型之上,比如ggml Llama系列、MPT以及StarCoder等知名项目所发布的版本均被良好集成到了软件之中。 - **Q:** 如何更新到最新版? 用户只需定期检查官方仓库是否有新的发布版本可用,如果有,则按照前述方法重新下载并替换现有实例即可实现无缝升级。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值