一、基本骨架-nn.Module
(1)看官网解释文档
神经网络定义的模板:
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
# 初始化
def __init__(self):
super().__init__() #调用初始化
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):# 反向传播
# 经过两次 卷积(conv)+非线性(relu)处理
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
(2)代码示例
(3)从程序开始执行处加断点,进行debug。查看具体流程
首先,为了调用Swagkg(),进行module初始化
完成之后,生成一个Swagkg()神经网络:
创建一个输入:x,放到神经网络Swagkg()中
然后,x进入到forward函数中:
进行处理之后,output变成了2:
然后,返回output,并将output的值进行打印:
二、卷积操作
torch.nn对torch.nn.functional进行了一个封装,为了更细致的了解卷积的操作,还是通过functional进行学习:
(1)查看官方文档
(stride中:sH是控制横向步径,sW是控制纵向步径,default为1是 横纵都走一步)
(2)卷积过程示例
设置输入矩阵还有卷积核:
结果中只显示2个尺寸数值,但是官方文档中,尺寸数值有4个。使用torch提供的一个尺寸变换:
尺寸转变好之后,接下来就可以运行functional提供的卷积conv2了:
# stride分别为1和2
# padding:在图像的左右两边是否会进行一个填充,决定填充的大小(填充的值都为0),默认情况是不进行填充的。
三、卷积层
看官方文档:
代码实例:
(1)神经网络设置
把dataloader中的数据放入神经网络swagkg中,输出数据的尺寸
接下来看下,in_channels对于原输入图像有没有变化。经过卷积图像操作,out_inchannels变成6,大小变成30x30:
使用 tensorboard显示:
结果显示:
重要公式: