神经网络-基本骨架与卷积层

一、基本骨架-nn.Module

(1)看官网解释文档

 神经网络定义的模板:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
# 初始化
    def __init__(self):
        super().__init__() #调用初始化
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):# 反向传播
# 经过两次 卷积(conv)+非线性(relu)处理
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

(2)代码示例

(3)从程序开始执行处加断点,进行debug。查看具体流程

 首先,为了调用Swagkg(),进行module初始化

 完成之后,生成一个Swagkg()神经网络:

 创建一个输入:x,放到神经网络Swagkg()中

然后,x进入到forward函数中:

 进行处理之后,output变成了2:

 然后,返回output,并将output的值进行打印:

 二、卷积操作

torch.nn对torch.nn.functional进行了一个封装,为了更细致的了解卷积的操作,还是通过functional进行学习:

(1)查看官方文档

 (stride中:sH是控制横向步径,sW是控制纵向步径,default为1是 横纵都走一步)

(2)卷积过程示例

设置输入矩阵还有卷积核:

 结果中只显示2个尺寸数值,但是官方文档中,尺寸数值有4个。使用torch提供的一个尺寸变换:

 尺寸转变好之后,接下来就可以运行functional提供的卷积conv2了:

# stride分别为1和2

# padding:在图像的左右两边是否会进行一个填充,决定填充的大小(填充的值都为0),默认情况是不进行填充的。

 三、卷积层

看官方文档:

代码实例:

(1)神经网络设置

把dataloader中的数据放入神经网络swagkg中,输出数据的尺寸

 接下来看下,in_channels对于原输入图像有没有变化。经过卷积图像操作,out_inchannels变成6,大小变成30x30:

使用 tensorboard显示:

 结果显示:

 重要公式:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值