远程连接服务器跑实验

参考文章:

实现Linux服务器配置深度学习环境并跑代码完整步骤_linux服务器跑代码需要安装anaconda吗-CSDN博客

一、下载Xshell(已有)

(1)新建会话,链接ip地址,输入用户名与密码:

(2)查看自己服务器,显卡版本情况:CUDA版本是12.2,对应pytorch最新版本12.1就行

二、安装anaconda(已有)

进入anaconda3目录下,并使用命令“source ~/.bashrc”更新环境变量(前面变成base)

三、创建自己的conda虚拟环境

(1)创建pytorch环境

conda create -n lkg python=3.8

(2)查看已存在的conda环境

conda env list

(3)使用虚拟环境

①激活环境

conda activate lkg

②返回base环境

conda deactivate

③删除虚拟环境

conda env remove -n lkg

(4)安装pytorch环境

查看cuda版本是12.2,去Previous PyTorch Versions | PyTorch官网查找对应pytorch=12.1安装

conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia

(5)python 测试

先进入python环境,再测试

import torch
torch.cuda.is_available()

四、连接pycharm,远程连接服务器跑实验

参考:Pycharm远程连接服务器并运行代码(详细!)_pycharm将代码同步到远程服务器-CSDN博客

1.设置链接

(1)Tools ---> Deployment ----> Configuration

(2)选择“+”添加配置信息(随便取一个服务器名字)类型选择SFTP,“...”处添加配置信息

(3)输入ip地址,用户名以及密码,测试链接:

(4)设置Mappings

  感觉不太对劲,直接在这个可视化界面也能修改环境名称 和 新建文件夹:

2.实现代码自动上传

3.设置python编译器

选择现存的,刚才链接的服务器:

出现提示后,点击“Move”:

然后Next进入编译器路径配置,Sync folders可以理解是服务器同步文件所在位置(项目上传的位置,绝对路径)

最后点击“Create”,完成链接服务器!

4.代码上传服务器,实现运行

Tips:mapping 的地址要设好,它不上传该项目根目录只上传了所有文件,所以要在服务器创建一个空文件夹上传,不然会乱

5.运行实验,下载运行结果到本地

(1)将服务器目录在Pycharm右边显示:

点击“Upload here”,将运行结果下载到相应位置。

(2)运行实验

在xshell中,先激活自己的conda,再进入到自己的项目下,输入运行命令:

输入运行命令就行,但是有很多包需要重新下载,使用“conda install 缺失的包”进行下载。版本一定要对。我的pandas==1.3.5可以用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值