参考文章:
实现Linux服务器配置深度学习环境并跑代码完整步骤_linux服务器跑代码需要安装anaconda吗-CSDN博客
一、下载Xshell(已有)
(1)新建会话,链接ip地址,输入用户名与密码:
(2)查看自己服务器,显卡版本情况:CUDA版本是12.2,对应pytorch最新版本12.1就行
二、安装anaconda(已有)
进入anaconda3目录下,并使用命令“source ~/.bashrc”更新环境变量(前面变成base)
三、创建自己的conda虚拟环境
(1)创建pytorch环境
conda create -n lkg python=3.8
(2)查看已存在的conda环境
conda env list
(3)使用虚拟环境
①激活环境
conda activate lkg
②返回base环境
conda deactivate
③删除虚拟环境
conda env remove -n lkg
(4)安装pytorch环境
查看cuda版本是12.2,去Previous PyTorch Versions | PyTorch官网查找对应pytorch=12.1安装
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia
(5)python 测试
先进入python环境,再测试
import torch
torch.cuda.is_available()
四、连接pycharm,远程连接服务器跑实验
参考:Pycharm远程连接服务器并运行代码(详细!)_pycharm将代码同步到远程服务器-CSDN博客
1.设置链接
(1)Tools ---> Deployment ----> Configuration
(2)选择“+”添加配置信息(随便取一个服务器名字)类型选择SFTP,“...”处添加配置信息
(3)输入ip地址,用户名以及密码,测试链接:
(4)设置Mappings
感觉不太对劲,直接在这个可视化界面也能修改环境名称 和 新建文件夹:
2.实现代码自动上传
3.设置python编译器
选择现存的,刚才链接的服务器:
出现提示后,点击“Move”:
然后Next进入编译器路径配置,Sync folders可以理解是服务器同步文件所在位置(项目上传的位置,绝对路径)
最后点击“Create”,完成链接服务器!
4.代码上传服务器,实现运行
Tips:mapping 的地址要设好,它不上传该项目根目录只上传了所有文件,所以要在服务器创建一个空文件夹上传,不然会乱
5.运行实验,下载运行结果到本地
(1)将服务器目录在Pycharm右边显示:
点击“Upload here”,将运行结果下载到相应位置。
(2)运行实验
在xshell中,先激活自己的conda,再进入到自己的项目下,输入运行命令:
输入运行命令就行,但是有很多包需要重新下载,使用“conda install 缺失的包”进行下载。版本一定要对。我的pandas==1.3.5可以用