opencv-边缘检测

一、Canny边缘检测

Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化

步骤

1.平滑图像:使用高斯滤波器与图像进行卷积,平滑图像,以减少边缘检测器上明显的噪声影响。
使用高斯滤波器,以平滑图像,滤除噪声。

2.计算图像的梯度和方向:图像中的边缘可以指向各个方向,这里计算图像的梯度,并将梯度分类为垂直、水平和斜对角。
计算图像中每个像素点的梯度强度和方向。

3.非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则该像素点保留为边缘点,否则该像素点将被抑制。
应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。

4.双阈值算法检测和连接边缘:仍然存在由于噪声和颜色变化引起的一些边缘像素。为了解决这些杂散响应,必须用弱梯度值过滤边缘像素,并保留具有高梯度值的边缘像素,可以通过选择高低阈值来实现
应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。

5.通过抑制孤立的弱边缘最终完成边缘检测。

1.1高斯滤波器

在这里插入图片描述

2.1梯度和方向

在这里插入图片描述

3.1非极大值抑制

图像中的边缘可以指向各个方向,这里计算图像的梯度,并将梯度分类为垂直、水平和斜对角。
利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则该像素点保留为边缘点,否则该像素点将被抑制。
在这里插入图片描述
在这里插入图片描述

4.1双阈值检测

仍然存在由于噪声和颜色变化引起的一些边缘像素。为了解决这些杂散响应,必须用弱梯度值过滤边缘像素,并保留具有高梯度值的边缘像素,可以通过选择高低阈值来实现
在这里插入图片描述
核心代码

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)
# 阈值最小和最大
v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

可以从下图看出,阈值小得到的特征比较多在这里插入图片描述

OpenCV-Python是一个用于计算机视觉和图像处理的开源库。边缘检测OpenCV-Python中一个重要的图像处理操作。根据引用的内容,边缘检测的方法包括Laplacian边缘检测、Sobel边缘检测和Canny边缘检测。其中,Laplacian边缘检测是一种基于二阶导数的方法,Sobel边缘检测是一种基于一阶导数的方法,而Canny边缘检测是一种综合了多种方法的优化算法。您可以根据引用中的文章目录了解更多关于这些方法的详细信息。 引用给出了一个使用OpenCV-Python进行自动确定阈值的边缘检测的示例代码。该代码首先读取一张名为'bee.jpg'的图像,并将其转换为灰度图像。然后,通过应用高斯模糊对图像进行预处理,使用自动确定阈值的方法计算合适的阈值,最后使用Canny边缘检测算法检测图像的边缘。您可以根据需要调整代码中的参数来适应不同的图像。 总而言之,OpenCV-Python提供了多种边缘检测方法,包括Laplacian边缘检测、Sobel边缘检测和Canny边缘检测。您可以根据具体需求选择适合的方法,并使用OpenCV-Python提供的函数进行图像处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【OpenCV-Python】14.OpenCV边缘检测](https://blog.csdn.net/weixin_43843069/article/details/121950301)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tc.小浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值