前 言
大语言模型,尤其是基于思维链提示词(Chain-of Thought Prompting)[1]的方法,在多种自然语言推理任务上取得了出色的表现,但不擅长解决比示例问题更难的推理问题上。本文首先介绍复杂推理的两个分解提示词方法,再进一步介绍将提示词方法应用于知识图谱复杂逻辑推理的工作。
文章一:“Least-to-Most Prompting”[2]
让大模型学会处理更复杂的推理
本文首先提出了Least-to-Most Prompting方法的动机,是人类智慧与机器学习之间的三个差异:
(1)面对一个新问题时,人类可以通过很少的示例中解决它,但机器通常需要大规模的标注语料;
(2)人类可以很清楚的阐释所做预测的隐含原因,但机器学习是一个黑盒子;
(3)人类可以解决比之前见过的问题更难的问题,但机器学习只能解决与之前相同难度的问题。
Google Brain在2022年提出Chain-of-Thought方法,利用few-shot prompting尝试填补人类智慧和机器学习之间的差距,但他不能解决比实例问题更难的问题。为此,该团队提出了Least-to-Most Prompting方法,该方法分为两个阶段:第一阶段将一个复杂问题分解为一个简单子问题序列;第二阶段按顺序解决子问题,且回答后续子问题会依赖前序子问题的答案。
下图给出了Least-to-Most Prompting方法解决一个数学问题的示例:
(1)将复杂问题分解为简单子问题;
(2)按序解决子问题,其中,回答第二个子问题时使用了第一个子问题的答案。
实验部分,论文通过符号操作(symbolic manipulation)、组合泛化(compositional generalization)和数学推理(math reasoning)三类任务来验证Least-to-Most Prompting的效果,并与Chain-of-Thought Prompting方法进行比较。
符号操作任务的输入是一个单词列表,对应输出是将这个单词列表中所有单词最后一个字母连接起来。如,“thinking machine”的输出为“ge”。
如图,Least-to-Most Prompting方法首先将一个长的单词序列转化为子序列,