【农业模型】GPT地学领域应用、AquaCrop、R贝叶斯生态、Copula函数、DSSAT、APSIM、WOFOST、DNDC、CERRES、SWACRO、RZWQM、POTATO、SOLANUM

农业模型依据研究对象分为 农业生物模型、农业环境模型、农业技术模型、农业经济模型

作物模型,即作物生长模拟模型(或称作物生长模型),是从系统科学的角度,基于作物生理过程机制,将气候、土壤、作物品种和管理措施等对作物生长的影响因素作为一个整体系统的数值模拟系统。能够以特定时间步长对作物在单点尺度上生长发育的生物学参数以及作物产量进行动态模拟,定量化研究环境因子以及田间管理措施对作物生长发育的影响。

通用型作物模型:WOFOST、apsim、CERRES、EPIC、AquaCrap等

apsim模型被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态等多个领域。

DSSAT模型能够模拟27种主要农作物的生长发育,包括小麦、玉米、水稻等多种作物。它不仅支持单个作物的模拟,还包括了多种作物的动态生长模拟模型。DSSAT由一系列实用程序和应用程序支持,包括天气、土壤、遗传、作物管理和观察实验数据,并提供了所有作物模型的示例数据集。该模型能够模拟作物的生长、发育和产量,作为土壤-植物-大气动力学的一种功能。


第一、DSSAT作物模型建模方法


Decision Support Systems for Agrotechnology Transfer (简称DSSAT)模型是世界知名的作物生长模拟模型之一。现有版本V4.7能模拟27种主要农作物的生长发育和产量形成过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域。

DSSAT模型与高级应用

作物生长模型的概念

作物生长模型的发展现状

DSSAT模型的开发历程

DSSAT模型的模块及模拟流程

作物生长模型的前沿应用

作物生长模型的算法改进

作物生长模型站点尺度和栅格尺度的模拟

作物生长模型与机器学习的集成

作物生长模型与遥感、表型数据的同化

DSSAT模型安装与编译

DSSAT模型操作

DSSAT的安装

DSSAT模型操作界面讲解

2 DSSAT模型源码操作与编译

DSSAT模型源码安装

DSSAT源码的介绍与修改

DSSAT源码的编译

DSSAT气象文件准备

DSSAT自带的气象数据的准备

DSSAT气象文件的介绍

日照转辐射算法

DSSAT气象文件转化

DSSAT模型的物候发育模块

DSSAT生育期算法

DSSAT模型的生育期尺度

DSSAT模型的积温计算

DSSAT模型的生育期算法

DSSAT模型的生育期影响因子及算法

DSSAT土壤文件准备

DSSAT模型的土壤输入参数

DSSAT模型土壤参数在数据缺失情况下的近似估算

 DSSAT模型土壤输入文件准备

DSSAT土壤水-碳-氮模块

DSSAT模型的土壤模块

DSSAT模型土壤水分模块的主要算法

DSSAT模型土壤养分动态过程模拟及N2O排放的模拟

氮素的矿化和固定过程

氮素的硝化作用与反硝化作用

土壤N2O的模拟

土壤磷动态与模拟

DSSAT模型土壤碳库模型及土壤有机碳SOC的模拟

土壤碳库模型的发展历程

土壤碳的周转模型

土壤CO2排放和土壤有机碳的模拟

DSSAT管理文件准备

 DSSAT模型的农田管理措施的准备

DSSAT模型播期和播种密度设置

DSSAT模型施肥设置(化肥+有机肥)

DSSAT模型的灌溉设置

DSSAT模型秸秆还田设置

2 DSSAT模型的作物生长模拟

光温潜在产量的模拟

不同管理措施下作物生长的模拟

DSSAT作物生长模拟算法

1 DSSAT模型光合生产和物质分配算法

2 DSSAT模型产量形成算法

3 DSSAT模型养分吸收、分配和养分效应算法

4 DSSAT水分效应算法

DSSAT作物参数设置和优化

1 DSSAT模型的主要遗传参数,包括物种参数、生态型参数、品种参数

2 DSSAT软件自带的参数优化方法

 DSSAT软件自带的参数敏感性分析方法

 DSSAT模型结果分析与模型评价

1 对DSSAT模拟的模拟结果进行分

2 对模拟结果的进行模型评价

3 对模型的结果进行做图

更多案例模拟与疑难解答

1 不同作物、不同情景的模拟

2 实例回顾、训练、巩固

3 答疑与讨论(大家提前把问题整理好)


第二、Python语言快速批量运行DSSAT模型及交叉融合、扩展应用

Python语言与数据科学

1 Python语言与数据科学

python语言发展脉络

Python语言在作物模型中的应用

2 1 Python软件安装及入门

Anaconda软件安装

Python库的安装与基本语法

Python的字符操作与正则表达式

Python的数据清洗与存储

各种数据格式的读写及操作

Python准备DSSAT气象文件

1 Python操作和准备气象文件

DSSAT气象文件的编写分析

使用Python编写DSSAT气象文件

日照转辐射算法的编写

DSSAT气象文件的批量转化

Python准备DSSAT土壤文件

1 DSSAT模型的土壤模块及土壤输入参数

使用Python近似估算土壤输入参数

使用Pyhon语言操作和准备土壤输入文件

使用Python快速批量生产土壤文件

使用Python调用全球土壤数据库的数据并转化成DSSAT土壤文件

Python准备DSSAT管理文件

1 使用Python对农田管理措施(播期、密度、施肥、灌溉、有机肥、秸秆还田等)进行设置

2 使用Python进行管理文件批量准备(只需要填写excel,就能批量模拟)

Python准备DSSAT参数文件及批量模拟文件

DSSAT模型的主要遗传参数,包括物种参数、生态型参数、品种参数

主要的参数优化方法

使用Python语言进行参数文件准备

使用Python语言对批量模拟文件的编写

Python对模拟结果进行数据清洗、整理

1 使用Python读取DSSAT文件的模拟结果

2 对模拟结果进行数据清洗、分类和整理

Python对模拟结果进行数据分析及绘图

1 使用Python对模拟结果进行分析

2 使用Python计算模拟结果的MSE、RMSE、MAE、d-value、EF值

3 使用Python对模拟结果进行可视化(模拟结果的动态图和1:1图等)


第三、基于R语言APSIM模型进阶应用与参数优化、批量模拟
APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生长模拟模型之一。APSIM模型有Classic和Next Generation两个系列模型,能模拟几十种农作物、牧草和树木的土壤-植物-大气过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域

R语言是一门应用场景广泛、简单易学的程序语言,APSIM模型开发了许多R语言辅助包,在APSIM模型的气候、土壤、管理措施等数据准备,自动化模拟,参数优化和结果分析上都发挥着重要的作用

R语言将模型参数的样本量批量导入到apsim模型里面运行,并得到最终到模型运行结果。
从simlab里面倒出来的只是n个样本。就比如说我要对18个模型参数进行处理,我首先从simlab中把18个参数的1000个样本导出来(.txt文件格式),然后将有1000个样本量导.txt文件用R语言批量输入到模型中(运行1000次),得到最终结果。

APSIM模型应用与R语言数据清洗

1) 作物生长模型的概念

2) 作物生长模型的发展现状

3) APSIM模型的开发历程

4) APSIM模型的模块及模拟流程

5) APSIM模型操作

APSIM的安装

APSIM模型操作界面讲解

R语言编程与数据清洗(数据筛选、合并、切片、重复值、缺失值处理)

APSIM气象文件准备与R语言融合应用

APSIM自带的气象数据的准备

1) APSIM气象文件.met的介绍

2) 日照转辐射算法

3) APSIM气象文件转化

4) APSIM模型陆气交换和能量平衡过程

案例一:使用R语言进行气象文件的生成

案例二:使用R语言将气象共享网数据/NC等数据批量生产APSIM气象文件

案例三:使用R语言批量修改气象文件及调用APSIM文件

APSIM模型的物候发育和光合生产模块

APSIM物候发育和光合生产

1) APSIM模型的生育期尺度

2) APSIM模型的积温计算

3) APSIM模型的生育期算法

4) APSIM模型的生育期影响因子及算法

5) APSIM模型光合生产算法

案例一:使用APSIM classic 和NG版本模拟生育期和生物量

APSIM物质分配与产量模拟

1 APSIM模型的物质分配算法

2 APSIM模型产量模拟模块

1) APSIM模型的穗粒数模拟

2) APSIM模型的产量模拟

3) APSIM模型的产量相关参数

案例一:作物潜在生物量和潜在产量的模拟

案例二:不同品种参数下作物产量的模拟

APSIM土壤水平衡模块

APSIM模型的土壤水分平衡算法

1) 土壤水蒸散和植物蒸腾算法

2) 土壤水径流和排水算法

3) 土壤水力参数的测试

案例一:APSIM模型输入参数和土壤文件的制备

案例二:APSIM模型土壤参数在数据缺失情况下的近似估算

案例三:使用R语言批量修改APSIM模型土壤参数

案例四:APSIM模型模拟土壤水分动态

APSIM土壤碳、氮平衡模块

APSIM模型土壤养分动态过程模拟及温室气体排放的模拟

1) 氮素的矿化和固定过程

2) 氮素的硝化作用与反硝化作用

3) 土壤N2O的模拟

案例一:APSIM模型N2O排放模拟

案例二:APSIM模型模拟土壤No3和NH4的动态变化

APSIM土壤碳、氮平衡模块

APSIM模型土壤碳库模型及土壤有机碳SOC的模拟

1) 土壤碳库模型的发展历程

2) 土壤碳的周转模型

3) 土壤有机碳的模拟

案例一:APSIM模型土壤碳库模型参数率定

案例二:APSIM模型模拟秸秆还田对土壤碳库变化的影响

APSIM农田管理模块与情景模拟

APSIM模型的农田管理措施的准备

1) APSIM模型播期和播种密度设置

2) APSIM模型施肥设置(化肥+有机肥)

3) APSIM模型的灌溉设置

4) APSIM模型秸秆还田设置

5) APSIM模型多年模拟和轮作模拟

案例一:APSIM模型模拟气候变化对作物生长的影响

案例二:APSIM模型模拟多年轮作下土壤有机碳和温室气体排放的影响

案例三:APSIM模型模拟作物单做、连作和轮作

案例四:APSIM模型模拟玉米大豆复合种植(间作)

案例五:使用R语言对APSIM管理文件进行批量修改及批量运行

APSIM模型Next Generation(NG)版本

APSIM模型Next Generation(NG)版本异同

1) APSIM模型NG版本与Classic版本的区别

2) APSIM模型NG版本Clock模块、气象土壤模块、Factors模型、品种模块

3) APSIM模型NG版本管理模型设置

案例一:APSIM模型NG版本设置多种管理情景组合

案例二:APSIM模型NG版本复现Classic版本的案例

APSIM模型参数优化和结果分析与模型评价

APSIM模型的参数优化

1) APSIM模型的主要遗传参数

2) APSIM模型的参数优化方法

案例一:使用频率派和贝叶斯派(MCMC)等多种方法对APSIM模型Classic和NG版本进行参数优化

案例二:使用R语言批量读取模拟结果以及对APSIM模型进行评价

案例三:使用R语言对模拟结果进行可视化(模拟结果的动态图和1:1图等)

APSIM模型源代码解析

APSIM模型源代码解析

1) APSIM模型源代码的结构解析

2) APSIM模型源代码编译

案例一:更改APSIM模型源代码参数进行编译

案例二:运用编译源代码后的模型进行模拟


第四、双碳目标下DNDC模型建模方法及在土壤碳储量、温室气体排放、农田减排、土地变化、气候变化中的应用


由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。国家领导人在多次重要会议上讲到,要把“双碳”纳入经济社会发展和生态文明建设整体布局。同时,提到要把减污降碳协同增效作为促进经济社会发展全面绿色转型的总抓手。“十四五”时期,我国生态文明建设进入了以降碳为重点战略方向、推动减污降碳协同增效、促进经济社会发展全面绿色转型、实现生态环境质量改善由量变到质变的关键时期。实现美丽中国建设目标,“双碳”行动将会发挥非常重要的作用。碳循环的精确模拟是实现“双碳”行动的关键。

DNDC(Denitrification-Decomposition,反硝化-分解模型)是目前国际上最为成功的模拟生物地球化学循环的模型之一,自开发以来,经过不断完善和改进,从模拟简单的农田生态系统发展成为可以模拟几乎所有陆地生态系统的动态模拟模型

DNDC模型介绍

1.1 碳循环模型简介

1.2 DNDC模型原理

1.3 DNDC下载与安装

1.4 DNDC注意事项

DNDC初步操作

2.1 DNDC界面介绍

2.2 DNDC数据及格式

2.3 DNDC点尺度模拟

2.4 DNDC区域尺度模拟

2.5 DNDC结果查看

遥感和GIS基础

3.1 DNDC中的遥感和GIS技术

3.2 ArcGIS软件界面

3.3 坐标系与坐标变换

3.4 区域地块的数字化

3.5 ArcGIS数据处理

DNDC气象数据

4.1 DNDC气象数据调用

4.2气象数据资源与下载

4.3 DNDC气象数据制备

4.4 太阳辐射数据的计算

4.5 GLDAS数据显示与读取

4.6 气象站点泰森多边形分析

DNDC土地数据

5.1 遥感技术简介

5.2 ENVI软件界面

5.3 遥感图像获取与显示

5.4 遥感图像处理

5.5土地利用遥感解译

5.6 遥感影像地块数字化

5.7 定量遥感与土地类型提取

5.8 土地利用遥感产品下载与处理

DNDC土壤数据

6.1 土壤数据原理

6.2 SPAW软件土壤质地制备

6.3 土壤类型数据处理

6.4 土壤粒径组成与参数库查询

6.5 SPAW软件土壤参数计算

6.6 HWSD土壤数据处理

DNDC结果分析

7.1 DNDC单点结果统计

7.2 DNDC区域结果统计

7.3 DNDC区域结果的地块显示

7.4 DNDC区域结果的空间插值

7.5 DNDC区域结果地图制作

DNDC率定验证

8.1 率定验证原理

8.2 参数率定实现

8.3 率定验证的判断

8.4 参数敏感性分析析

土壤碳储量与作物产量

9.1 土壤碳储量分析

9.2 土壤含水量分析

9.3 土壤温度分析

9.4 作物产量分析

温室气体排放分析

10.1 二氧化碳分析

10.2 甲烷分析

10.3 氧化亚氮分析

农田减排潜力分析

11.1 双碳目标与碳减排措施

11.2 DNDC减排潜力模拟

土地变化下的DNDC模拟

12.1 土地利用变化与碳排放

12.2 土地利用变化的转移矩阵分析

12.3 土地利用变化情景分析

12.4 未来土地利用预测

12.5 土地利用变化下的DNDC模拟

气候变化下的DNDC模拟

13.1 CMIP6数据简介

13.2 CMIP6数据下载

13.3 CMIP6数据显示

13.4 CMIP6数据转DNDC气象数据

13.5 未来气候变化下的DNDC模拟


第五、WOFOST模型与PCSE模型


 实现作物产量的准确估算对于农田生态系统响应全球变化、可持续发展、科学粮食政策制定、粮食安全维护都至关重要。传统的经验模型、光能利用率模型等估产模型原理简单,数据容易获取,但是作物生长发育非常复杂,中间涉及众多生理生化过程,使用经验模型或光能利用率模型缺乏一定的机理性,而作物模型是一种能够详细描述作物生长原理并能高精度模拟作物生长发育全过程的以天为步长的机理模型,在生产产模拟方面具有很大的优势。农业生产模拟在现代农业中具有重要的意义,它为农业决策制定、资源管理和食品生产提供了有力的工具和支持。

    WOFOST(WorldFoodStudies)和PCSE(PythonCropSimulationEnvironment)是两个用于农业生产模拟的模型:WOFOST是一个经过多年开发和验证的模型,被广泛用于全球的农业生产模拟和农业政策分析;采用了模块化的结构,可以对不同的农作物和环境条件进行参数化和适应;WOFOST可用于长期模拟,能够模拟整个作物生长周期,包括播种、生长、收获等各个阶段;WOFOST积累了大量的实验数据,可用于验证模型的准确性,使其成为决策支持和政策分析的有力工具。PCSE是用Python编写的,这使得它易于学习和使用,尤其是对于具有Python编程经验的用户。PCSE是开源的,用户可以自由访问和修改其代码,以满足特定需求;PCSE可以与其他Python库和工具集成,使其更容易与数据科学工作流程和其他农业相关工具进行集成。选择使用哪个模型取决于具体的应用场景、用户的技能水平以及可用数据和计算资源。

     将围绕两个模型运行展开,包括:数据准备,模型参数解读与设置,模型运行与结果输出,模型结果解读与决策支持等内容。本课程培训将你将学会如何使用WOFOST和PCSE这两个农业生产模型进行作物生长模拟,了解不同农作物的生长过程、对环境的响应以及如何进行模拟预测;使你深入了解作物的生长、发育和生态需求,包括光合作用、水分需求、营养吸收等;以帮助你在农业决策中更准确地评估不同因素的影响,如何根据气象、土壤和作物特性做出更明智的决策,例如何时种植、如何灌溉和施肥等;在模型应用过程中,你将需要处理和整理农田相关的数据,这有助于提高你的数据处理和分析能力;同时,你还会学习如何运用模型进行科学研究,如何设置实验和模拟,以及如何解释和分析模型结果。我们将为你提供一系列与农业生产模拟和科学研究相关的技能,这些技能可以在农业、科研和决策支持等领域中发挥作用。

第一章:理论基础

农作物生长模型概述

1、介绍农作物生长模型的用途和应用领域

2、比较WOFOST模型和PCSE模型的特点和优势

数据准备

1、气象数据:

数据类型:温度、降水、湿度、风速等气象要素数据。

数据格式:时间序列数据,通常以日为单位。

获取方法:气象数据通常可以从气象站、卫星数据、气象模型输出或气象数据服务提供商处获取。

处理方法:数据需要按照WOFOST模型的要求进行格式化,包括将数据按照时间步长整理成日数据,并确保数据质量。

2、土壤数据:

数据类型:土壤质地、有机质含量、土壤层次、土壤水分保持量等土壤属性。

数据格式:通常以土壤剖面的方式提供,包括不同深度的土壤属性数据。

获取方法:土壤数据可以通过土壤测量、土壤样本分析、土壤数据库或地理

信息系统(GIS)来获取。

处理方法:需要将土壤数据与模型所需的土壤层次和深度相匹配,并确保数据质量和一致性。

3、农田管理信息:

数据类型:包括灌溉、施肥、播种日期、收获日期等管理实践数据。

数据格式:通常以时间序列形式提供。

获取方法:这些数据通常由农场记录、农民提供或通过问卷调查获得。

处理方法:数据需要与模型的时间步长匹配,并与气象和土壤数据进行时间上的协调。

4、作物参数:

数据类型:作物特性、生长速率、生育期、产量潜力等作物参数。

数据格式:通常以具体作物的参数表格或文件形式提供。

获取方法:这些数据可以从农业研究文献、农业扩展服务或专业农业组织获得。

处理方法:将作物参数与特定作物的模型运行相关联。

5、其他数据:

地理数据:可能需要地理信息、地形和地理坐标等数据来定义模型的运行区域。

观测数据:实际的农田观测数据,如产量、生长情况、土壤水分等,用于模型校准和验证。

6、处理和准备数据的方法:

数据清洗:确保输入数据没有缺失值或异常值,并进行必要的数据清洗和修复。

数据插值:在需要时,使用插值方法填充缺失的数据,以获得连续的时间序列。

数据格式转换:将数据转换成模型可以接受的格式,通常是文本或表格文件。

数据空间匹配:确保不同来源的数据在时间和空间上匹配,以便模型正确运行。

第三章:WOFOST模型基础

1、WOFOST模型基础:

WOFOST模型的基本原理和生理基础

设置模型输入数据和参数

运行WOFOST模型并解读输出结果

2、WOFOST模型的主要参数包括:

物候发育:根据温度和光照等因素,计算作物的发育阶段(DVS),从0(出苗)到1(开花)到2(成熟)。发育阶段决定了作物的生理状态和同化物的分配比例1。

光截获:根据叶面积指数(LAI)、辐射水平、散射系数等因素,计算作物冠层内的光强分布和被吸收的光能量。

CO2同化:根据叶片的光合速率-光响应曲线、温度、CO2浓度等因素,计算作物冠层内各层叶片的CO2同化率和总同化量。

呼吸作用:根据维持呼吸和生长呼吸的经验公式、温度、干物质含量等因素,计算作物各器官的呼吸消耗量。

同化物分配:根据发育阶段、干物质分配系数等因素,计算同化物在叶、茎、根、贮藏器官等部位的分配比例和累积量。

叶面积动态:根据叶片的形成速率、衰老速率和死亡速率等因素,计算叶面积指数(LAI)的变化和总叶面积。

蒸腾作用:根据潜在蒸散量、气孔导度、土壤水分等因素,计算作物冠层内各层叶片的蒸腾率和总蒸腾量。

土壤水分平衡:根据降水、渗透、蒸发、蒸腾、排水等因素,计算土壤剖面内各层的土壤含水量和水分亏缺量。

土壤肥力:根据土壤氮素含量、氮素矿化速率、氮素淋失速率等因素,计算土壤对作物提供氮素的能力和氮素限制系数。

3、WOFOST模型安装和运行:

气象数据库建立:

WOFOST气象格式文件包含长期的月平均值(WOFOST气候)或每月平均时间序列(WOFOST天气)的有关气象变量。

气象数据库的编写遵循独自的语法规则该文件的前三行头文件是带有注释的信息,这些信息用于区分气象站点,此文件存储在.../WCC/METEO/CLIMD。作

气象数据库文件包括最低气温、最高气温、天气辐射、水汽压、风速、降水和每月降水天数。

作物数据库的建立

对每种模拟作物来说,必须为WOFOST模型提供一系列具体的参数。

参数是包括作物的物候学参数、同化和呼吸特征参数以及同化物分配到植物器官的参数等,这些参数保存在安装目录...\WCC\CROPD,在模型控制中心可以通过选择该作物调用该文件进行模拟。

土壤数据库的建立

土壤文件包含土壤物理特性的信息,这些土壤数据常常被模型用来模拟水分限制条件下的日土壤水分平衡,并确定作物的最佳种植日期。

介绍WOFOST模型的软件环境、安装步骤、运行界面和操作指南。

4、WOFOST模型输出结果:介绍WOFOST模型的输出结果类型、含义、展示和分析方法。

5、WOFOST模型校准和优化:

WOFOST模型的校准目标、方法、工具和评价指标。

模型验证:

模型参数敏感性分析

模型参数标定

作物本身的生长发育是一个非常复杂的过程,因此在利用作物模型模拟作物生长过程中涉及的输入参数较多,主要包括气象、作物、土壤、田间管理参数等,在模型参数敏感性分析的基础上,结合实验区实际情况,对敏感性较高的参数进行定标,参数标定部分可参阅文献和网站等资料。

6、WOFOST模型应用案例:

介绍WOFOST模型在不同作物类型、气候条件、管理措施等方面的应用案例。

第四章:PythonCropSimulationEnvironment

1、PCSE模型基础:

"PCSE"通常指的是"PythonCropSimulationEnvironment",它是一个用于模拟农作物生长和生态系统互动的Python软件包。PCSE旨在帮助研究者和农民预测不同农作物在不同环境条件下的生长情况。

2、安装和配置PCSE

1)已安装Python;

2)设置Python环境;

3)使用Python的包管理工具`pip`来安装PCSE。

3、创建PCSE项目:

以创建一个新的Python项目或文件,以开始使用PCSE。

4、设置PCSE输入数据和参数

导入PCSE模块:通导入PCSE的核心模块以及特定的作物模型

5、准备数据:

准备与作物模型相关的数据,如土壤性质、气象数据等。

6、配置作物模型:

设置作物种类、种植日期、品种等参数,创建一个包含这些信息的字典。

7、运行模拟:

根据气象数据、土壤属性和农田管理实践,模拟农作物的生长和水分需求。运行PCSE模型,并获取输出结果。

土壤水分情况:PCSE可以提供有关土壤水分的模拟结果,包括土壤水分的变化趋势和水分利用效率。

作物的生长情况:您可以获得作物的生长阶段、叶面积指数(LAI)以及根系水分吸收等信息。

灌溉建议:基于模拟结果,PCSE可能会提供有关何时进行灌溉以及灌溉的数量的建议。

8、分析和可视化:

分析和可视化模拟结果,以便了解农作物生长的预测和模拟。

第五章:案例拓展

1、模型应用和决策支持:

如何使用WOFOST和PCSE模型为农田提供农作物生长和产量预测

模型在灌溉管理、施肥、气候适应性等方面的应用

2、模型的局限性和不确定性:

讨论模型的局限性和假设

评估模型结果的不确定性


第六、双碳目标下农田温室气体排放估算与模拟


当前全球温室气体大幅升高,过去170年CO2浓度上升47%,这种极速变化使得物种和生态系统的适应时间大大缩短,进而造成全球气候变暖、海平面上升、作物产量降低、人类心血管和呼吸道疾病加剧等种种危害。生态与农业是甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)等温室气体的主要排放源,占全产业排放的13.5%。农田温室气体又以施肥产生的N2O和稻田生产产生的CH4为主,如何对农田温室气体进行有效模拟,不确定性较大。本文将从碳库模拟、机器学习方法、生命周期评价法(LCA)、经验模型和过程模型多个维度详细进行生态与农田温室气体排放的模拟 

 温室气体排放模拟研究

1. 农田温室气体的前沿应用

农田温室气体排放的经典实验设计

农田温室气体排放的全球数据整合

农田温室气体排放的模拟研究

农田CH4和N2O排放模拟

1. 农田CH4排放的模拟研究

甲烷(CH4)排放的过程

CH4排放的模拟研究

CH4排放的经验算法和过程算法

CH4排放程序的编写

2. 农田N2O排放的模拟研究

氧化亚氮(N2O)排放的过程(氮素的硝化作用与反硝化作用)

N2O的模拟的主流方法和模型

N2O排放的模拟练习

农田碳库模型和土壤呼吸

1 农田主流碳库分解模型

碳库的概念

一级动力学碳库方程

主流碳库模型及其算法

两三库模型的编写和呼吸CO2的模拟

基于生命周期评价法的农田温室气体排放估算

1 生命周期评价法

生命周期评价法介绍

生命周期排放清单数据库

2 自下而上的农田碳排放估算

生命周期边界的设定

不同农业活动情景下农田温室气体排放估算

基于过程模型的温室气体排放模拟

1. DSSAT模型土壤养分动态过程及温室气体排放的模拟

DSSAT模型的CH4模拟

DSSAT模型的N2O模拟

DSSAT模型的CO2模拟

DSSAT模型的总温室气体和作物生产模拟

2. DSSAT模型温室气体模拟的实操练习

3. 不同农田管理情景下温室气体的模拟


第七、遥感数据与作物生长模型同化及在作物长势监测与估产中的应用


 基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及产量预测、栽培管理、环境评价以及未来气候变化评估等提供了定量化工具。但是,当作物生长模型从单点研究发展到区域尺度应用时,由于空间尺度增大而出现的地表、近地表环境非均匀性问题,导致模型中一些宏观资料的获取和参数的区域化方面存在很多困难,模型模拟结果也会存在很大的不确定性,而遥感信息在很大程度上可以帮助作物生长模型克服这些不足。           国产卫星(如HJ、GF、ZY)、MODIS、Landsat、Sentinel-2等遥感数据是进行大范围作物生长状态监测的有效手段;作物生长模型能够利用环境因素模拟作物生长过程,揭示作物生长发育的原因与本质。随着科学技术发展和农业应用需求的驱动,数据同化方法将遥感数据与作物生长模型相结合,监测作物长势及预测作物产量,是当前农业信息技术应用研究的重要内容和发展趋势之一。二者结合既能提供宏观监测信息,又可动态反映作物生长发育过程,有利于实现优势互补,提升应用潜力。

目前在基于数据同化方法耦合遥感与作物模型开展作物估产方面,尚未有成熟的商业软件面世,本文旨在帮助学员掌握遥感与作物模型同化的基础知识,与传统的作物遥感监测方法的区别与联系,以便解决农业生产科研中的相关科学问题。

涉及遥感数据与作物模型同化建模中的遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节

遥感基础理论知识

遥感平台(如无人机)与传感器、国内外主要陆地卫星(如Landsat、SPOT、HJ、GF)

遥感基本原理、光谱响应函数、遥感数据处理流程

遥感在陆地生态系统监测方面的应用

作物长势监测与产量估算国内外研究进展

国内外研究综述

研究实例分析

Fortran编程语言

软件安装 (使用xp/win7/win8/win10专业版笔记本)

工程文件建立、基本语法操作

作物参数遥感反演基本原理

遥感反演作物参数类型

生化组分 (叶绿素、氮、干物质、叶片水分含量、花青素)

生物物理参数 (LAI、LAD、株高、生物量)

生理生态参数 (FPAR、ET)

作物参数遥感反演模型

经验模型

线性模型

指数模型

对数模型

物理模型

辐射传输模型

几何光学模型

混合模型

计算机模拟模型

不同方法对比分析

PROSAIL模型 

输入参数:LAI/LAD/叶绿素/花青素/干物质/类胡萝卜素/水分含量/…

输出参数:植被冠层反射率

以FORTRAN代码为例上机操作反射率模拟流程

模拟叶片反射率与透射率

模拟植被冠层400-2500 nm高光谱反射率曲线

模拟Landsat OLI、MODIS等遥感传感器多光谱反射率数据

参数敏感性分析

待优化参数选择

局部敏感性分析

全局敏感性分析

EFAST敏感性分析方法介绍

SIMLAB软件操作流程

 PROSAIL模型参数全局敏感性分析

 模型参数在高光谱波段(400-2500nm)处的敏感性

遥感反演过程中的代价函数求解问题 

代价函数构建

反演方式

反演参数

“病态”问题

先验知识

函数极值问题

反演算法介绍

优化技术

查找表

神经网络

模拟退火

应用案例分析

基于查找表方法+PROSAIL模型的作物参数遥感反演

 查找表原理

查找表实现

基于查找表和PROSAIL模型的作物参数遥感反演

基于优化算法+PROSAIL模型的作物参数遥感反演

代价/目标函数极值求解

测试函数极值求解

优化算法求解PROSAIL模型参数

待求解作物参数最优值提取

作物模型程序化表达与运行

模型分类

经验模型

半机理模型

机理模型

模型选取原则

模型调试

模型标定

模型对比分析

应用案例分析

模型运行(以DSSAT作物模型为例、FORTRAN源码)

时间序列植被参数(如叶面积指数)演化模拟

作物参数(如LAI)时间序列变化及产量模拟过程

作物模型与遥感数据同化建模原理

作物模型与遥感观测耦合的必要性

作物模型优缺点

遥感观测优缺点

耦合必要性

耦合方法

驱动法      原理      程序实现过程      应用实例

数据同化方法

发展历程    数据同化算法介绍    方法对比分析

作物模型参数敏感性分析

待优化参数选择

局部敏感性分析

全局敏感性分析

作物模型与遥感数据同化

同化遥感反演结果(如LAI遥感产品)

同化遥感观测反

作物模型与遥感反演值同化建模的程序化实现(第一种方式)

作物模型与遥感反演值同化建模框架 

Fortrtan操作平台

遥感反演结果(如叶面积指数)

作物模型

变分算法

代价函数构建

迭代求解

输出:作物关键参数时间序列变化、产量估算结果、区域制图


第八、农田通量计算方法与应用


地表水热通量主要包括感热/显热通量和潜热通量,是陆-气交互以及水-热-碳循环研究的重要变量。其中,潜热通量是地表蒸散发的能量形式,对农业水资源管理、作物水分利用效率等非常关键。由于热红外遥感对地表干湿变化、以及农业干旱响应快速,利用地表温度遥感数据可以快速准确的反演地表水热通量。美国农业部(USDA)等也将这类方法作为农田通量计算的主流方法。本课程将重点讲解如何利用地表温度遥感数据和气象资料计算农田地表水热通量。

通量计算原理

;农田通量计算原理

地表水热通量是陆面与大气交互的重要变量,包含了陆面和大气的共同信息。本课程将利用遥感能量平衡方程和土壤热传导方程耦合得到较为先进的数据同化模型,通过输入遥感地表温度和大气资料(风速、气温、相对湿度、大气压、太阳辐射)计算感热通量和潜热通量,具体公式:

站点数据准备及模型调试

;农田通量单站计算方法

单站数据的下载与处理、以及模型参数的准备

地面观测数据可以选择FLUXNET2015、Ameriflux、CERN等观测网络下载。地面观测数据的处理,主要包括:

气象资料:包括风速、气温、大气压、相对湿度、太阳辐射、大气下行辐射,以及资料发生缺失如何填充等。

地表温度、反照率:利用四分量辐射仪实现对地表温度、地表反照率的计算。

叶面积指数:遥感叶面积指数数据的下载与单点信息提取。

土壤热容量、土壤热传导系数:利用土壤水分和土壤质地进行计算。

土壤温度:地面观测多层土壤温度数据。

通量观测数据:感热通量、潜热通量、蒸发比的计算与处理。

测量站点场景示意图

农田站点通量计算
模型调试与应用:利用MATLAB软件程序进行模型参数的调优,包括蒸发比、湍流传输系数、观测与模型误差、迭代次数等。

模型验证:利用涡动相关仪器观测的通量对模型进行验证与评估。

区域数据的准备及应用实践

&bsp;农田通量区域计算应用实践
区域数据的下载与处理
大气数据:CLDAS等区域气象驱动数据的下载与时空插值。

叶面积指数、植被指数:GLASS、MODIS遥感叶面积指数数据的下载与处理。

地表温度、反照率:MODIS等地表温度数据产品。

区域模型参数的准备
土壤质地:区域土壤质地数据,包括土壤砂土含量和土壤黏土含量百分比。

土壤温湿度:多层土壤水分与多层土壤温度。

土壤热容量、土壤热传导系数:利用区域土壤质地和土壤水分计算。

区域蒸发比参数的准备
以点代面法:利用通量站点观测蒸发比作为区域参数的先验值。

机器学习法:利用机器学习方法,综合地面观测资料、遥感数据、大气数据进行区域蒸发比参数的训练与建模,作为区域蒸发比参数的先验值。

农田区域通量计算实践操作
区域计算代码(MATLAB软件程序)的讲解,以及农田区域通量计算实践操作。


第九、无人机遥感在农林信息提取中的实现方法与GIS融合应用


遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。本课程梳理了我国目前无人机遥感在智慧农业信息提取的综合态势,对无人机平台的性能、机载传感器指标、地面传感器应用、农林遥感光谱指数、农林光谱建模方法进行了大量的分析。在此基础上,按照形态、生理生化、胁迫、估产等四大类信息提取目标,从理论和实践两方面进行了详细的分析。

其中,围绕着四大类信息,划分为十四个子专题:株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量。对每一个子信息都有相应的数据,涵盖三波段真彩色、多光谱和高光谱无人机数据,进行智慧信息提取的学习。

如何将无人机真彩色、多光谱和高光谱数据,与农林业应用需求紧密结合起来,是举办本次培训班的主要目的

第一章 综合态势分析

1.1 研究区及作物品种分析[☆理论学习]

(1)形态指标分析 (2)生理生化指标分析 (3)胁迫指标分析 (4)产量指标分析 (5)综合分
1.2 无人机平台分析

分析目前常用于农林行业的无人机平台。

1.3 无人机机载传感器分析

分析目前常用于农林行业的无人机机载传感器。

1.4 地面应用传感器分析

分析目前常用于农林行业的地面应用传感器分析。

1.5 农林遥感光谱指数分析

1.6 农林业建模    方法分析

第二章 农作物形态信息提取理论与实践

2.1 株数和株高——阈值分割技术

2.1.1 理论与方法 2.1.2 加载影像 2.1.3 波段指数计算 2.1.4 阈值分割 2.1.5 后处理

2.1.6 植株数统计、查询和制图

2.2 冠层覆盖度——属性计算技术

2.2.1 理论与方法 2.2.2 加载影像 2.2.3 导出面积数据 2.2.4 计算冠层覆盖度

2.3 作物倒伏——数字表面模型技术

2.3.1 理论与方法 2.3.2 加载影像 2.3.3 对齐照片 2.3.4 建立密集点云 2.3.4 生成网格 2.3.5 生成纹理 2.3.6 生成数字表面模型 2.3.7 导出DEM数据和正射数据  2.3.8 分析株高和作物倒伏

2.4 不同生育期状况——变化检测技术

2.4.1 理论和方法    41 2.4.2 加载影像    43 2.4.3 变化检测工作流    44 2.4.4 不同生育期结果分析    46

第三章 农作物生理生化信息提取理论与实践

3.1 叶面积指数——多元线性回归技术

3.1.1 理论与方法 3.1.2 加载影像 3.1.3 地面实测数据 3.1.4 假设条件 3.1.5 植被指数提取

3.1.6 数据整理 3.1.7 建立反演模型 3.1.8 数字制图


3.2 作物系数——多项式回归技术

3.2.1 理论与方法 3.2.2 加载影像 3.2.3 地面实测数据 3.2.4 假设条件 3.2.5 归一化水分指数提取 3.2.6 数据整理 3.2.7 建立反演模型  3.2.8 数字制图

3.3 叶绿素含量——相关性分析技术

3.3.1 理论与方法 3.3.2 加载影像 3.2.3 地面实测数据 3.2.4 假设条件 3.2.5 数据采集与整理 3.2.6 相关性分析 3.2.6 建立回归方程 3.1.8 数字制图

3.4 营养元素含量——间接提取技术

3.4.1 理论与方法 3.4.2 加载影像 3.4.3 地面实测数据 3.4.4 假设条件 3.4.5 回归分析 3.4.6 数字制图

第四章 农作物胁迫信息提取理论与实践

4.1 异常因素胁迫——异常信息提取技术

4.1.1 理论与方法 4.1.2 加载影像 4.1.3 建立遮掩层 4.1.4 异常信息提取流程 4.1.5 数字制图

4.2 病虫害——农作物胁迫信息提取技术

4.2.1 理论与方法 4.2.2 加载影像 4.2.3 胁迫提取 4.2.4 数字制图

4.3 作物衰老——森林健康提取技术

4.3.1 理论与方法 4.3.1 加载影像 4.3.3 衰老信息提取 4.3.4 数字制图

第五章 农作物产量信息提取理论与实践

5.1 净同化率——面向对象图谱合一提取技术

5.1.1 理论与方法 5.1.2 加载数据 5.1.3 地面实测数据 5.1.4 建立基于样本的规则 5.1.5 农田分割与合并 5.1.6 特征提取 5.1.7 数字制图

5.2 蛋白质含量——多指数决策树技术

5.2.1 理论与方法 5.2.2 加载数据 5.2.3 地面实测数据 5.2.4 作物多种指数计算 5.2.5 采集指数数据 5.2.6 建立决策树 5.2.7 运行决策树

5.3 生物量——人工智能信息提取技术

5.3.1 理论与方法 5.3.2 数据集说明 5.3.3 上传数据 5.3.4 图片标注 5.3.5 模型训练 5.3.6 校验模型 5.3.7 识别未知生物量图片


第十、双碳目标下基于“遥感+”融合技术在碳储量、碳收支、碳循环等多领域监测与模拟


以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。2015年多国在《巴黎协定》上明确提出缔约方应尽快实现碳达峰和碳中和目标。2019年第49届 IPCC全会明确增加了基于卫星遥感的排放清单校验方法。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。

卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。本此课程的目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题

以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。2015年多国在《巴黎协定》上明确提出缔约方应尽快实现碳达峰和碳中和目标。2019年第49届 IPCC全会明确增加了基于卫星遥感的排放清单校验方法。随着碳中和目标以及全球碳盘点的现实压力,基于遥感技术的碳监测成为了领域热点。

卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。本此目的就是梳理碳中和与碳达峰对卫星遥感的现实需求,系统总结遥感技术在生态系统碳储量、碳收支、碳循环以及人为源排放反演等领域的技术发展,以实践的角度切实解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题

双碳视角下遥感技术的研究方向

双碳背景及遥感的现实需求

全球碳库、碳收支及碳循环现状

碳储量、碳收支与碳循环中的遥感技术

ENVI及ArcGIS软件一体化集成技术

专题二:生态系统碳库的遥感估算—以森林碳储量为例

碳储量(碳库)估算的方法与原理讲解

遥感数据资源及下载

遥感数据的处理与特征参量的提取

特征参量重要性与敏感性分析

遥感回归模型的构建与碳储量估算

​生态系统碳收支的遥感模拟—以京津冀地区为例

碳源/汇(碳平衡/碳收支)遥感指标(NEP,NPP等)基本概念

碳收支估算模拟的方法和原理讲解

遥感及辅助数据的获取与处理

基于CASA模型的NEP时空分布提取

​区域能源消耗碳排放空间格局模拟—基于夜间灯光数据

能源消耗碳排放核查的原理与方法讲解

夜间灯光数据发展现状与获取

辅助数据的获取与处理

夜间灯光数据的处理

基于夜间灯光数据碳排放模型的构建与修正

土地利用变化碳排放效应的遥感监测—以城市扩张为例

土地利用变化碳排放估算的原理

大尺度土地利用变化数据的获取

高精度土地利用数据的制作

年际土地利用变化矩阵的制作

基于FLUS模型的多情景土地利用变化模拟

城市扩张碳排放效应的监测与制图

基于InVEST模型的土地利用碳储量分析

​农田生态系统碳循环模型的遥感应用—农田及土壤碳核算

主流生态过程模型原理与优缺点

DNDC模型的下载与安装

驱动数据的获取

模型驱动与参量调整

DNDC碳循环模拟结果分析

农田土壤有机碳核算

​陆地生态系统碳循环模型的遥感应用—流域生态系统为例

流域SWAT模型简介

SWAT-DAYCENT模型简介

驱动数据的获取

流域尺度碳循环模拟

流域土壤有机碳核算

​大气温室气体卫星反演数据分析—以甲烷卫星数据为例

温室气体监测技术的发展

可用温室气体卫星反演数据获取

甲烷卫星反演数据读取

甲烷卫星反演数据的分析


第十一、生态系统碳循环模型CENTURY建模


CENTURY模型,主要基于过程的陆地生态系统生物地球化学循环模型。主要用于模拟不同土壤

-植被系统间C、N、P和S的长期动态。根据土壤有机质的分解速率,CENTURY模型将土壤总有机

碳(TOC)分成了三个碳库,即活性、慢性和惰性有机碳库。

通过完整的案例分析,加深在实际项目中的理解应用。由于“碳中和”备受关注,案例的选择上,重点在内容上围绕碳方面展开,更符合研究热点的需求

CENTURY模型介绍与安装

关系模型的构建与应用    CENTURY模型原理      CENTURY模型的结构     模型的安装及注意事项

 介绍关系模型的特点、优势、构建过程、以及应用时的注意事项;

 CENTURY模型的开发及原理;

CENTURY模型各个模块的结构,并根据结构解释内涵。

下载并安装CENTURY模型软件,进入安装目录;

CENTURY模型文件系统及运行

模型的文件系统    模型的运行    实践演练

CENTURY模型安装目录下的文件系统;

进入模型操作界面,熟悉操作命令,运行模型;

设定特定生态系统的土地变化历史,使用CENTURY模型进行模拟实践。

CENTURY模型的参数系统

输入数据     参数设定     输出数据      情景演练

对模型的输入数据进行详细讲解,掌握如何按照要求的格式准备输入数据;

如何根据待模拟生态系统的土地利用和管理历史,设定参数,进行模拟;

模型的输出数据,并掌握输出结果提取方法

依据不同土地利用情景,调整参数,进行模拟实践。

CENTURY模型应用实例

Switchgrass生物量的模拟     柠条灌木林生产力的模拟

 CENTURY模型应用实践——以柠条灌木林生产力模拟为例

相关文献中对Switchgrass生物量的模拟过程;

文献中对柠条生产力的模拟过程;

熟悉CENTURY模型使用的全过程,包括数据整理、模型校正验证、模型预测:通过使用柠条生物量的数据,通过参数校正和验证,获得适合模拟柠条生产力的参数系统,并对柠条的生长进行预测。


第十二、基于MATLAB的无人机遥感数据预处理与农林植被性状估算


在新一轮互联网信息技术大发展的现今,无人机、大数据、人工智能、物联网等新兴技术在各行各业都处于大爆发的前夜。为了将人工智能方法引入农业生产领域。首先在种植、养护等生产作业环节,逐步摆脱人力依赖;在施肥灌溉环节构建智慧节能系统;在产量预测和商品定价生产管理环节提高效能。这些智慧农业迫切需要实现的目标,首先要解决的问题就是多源数据的获取与快速分析。

遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一.本次重点为掌握无人机遥感数据预处理的全链条理论与实践流程、典型农林植被性状的估算理论与实践方法、利用MATLAB进行编程实践(脚本与GUI开发)以及期刊论文插图制作等

认识主被动无人机遥感数据

1.1. 无人机平台与坐标系

1.2. 遥感载荷类型与数据

1.3. 飞行参数设置与计算

1.4. 无人机VS卫星主被动遥感数据特点

 读写无人机遥感数据

2.1. 读写带有/不带地理坐标的无人机影像

2.2. 读写超大尺寸无人机影像

2.3. 读写影像元数据信息

2.4. 读写激光雷达/摄影测量点云

预处理无人机遥感数据

概述遥感数据预处理

1.1 地物反射辐射信号

1.2 地物二向反射特性表征

1.3无人机影像的几何问题

辐射校正无人机影像
2.1. 光学测量系统辐射校正

2.2. 反射率校正

2.3. BRDF与阴影校正

几何校正无人机影像
3.1. 原始影像的几何畸变校正

3.2. 多光谱影像的几何配准

3.3. 正射影像地理几何校正

估算植被覆盖度fCover与光合有效辐射吸收比fPAR

1.1. 基于RGB图像分割的估算

1.2. 基于像元分解的估算

1.3. 基于点云的估算

1.4. 基于激光雷达回波的估算

估算叶面积指数LAI

2.1. 基于间隙率模型的估算

2.2. 基于辐射传输模型的估算

2.3. 基于机器学习模型的估算

估算叶绿素含量LCC

3.1 了解叶片辐射传输模型

3.2 基于辐射传输模型的估算

3.3 基于植被指数的估算

期刊论文插图精细制作与Appdesigner应用开发 

制作精美的期刊论文插图
1.1. 论文插图的尺寸、配色、字体要点

1.2. 散点图、直方图、折线图、小提琴图、密度图、假彩色图等制作

利用Appdesigner进行GUI开发
2.1. 认识Appdesigner

2.2. 函数调用与更新

2.3. 窗口间参数互传


第十三、AquaCrop模型 农业水资源管理及代码解析

AquaCrop是由世界粮食及农业组织(FAO)开发的一个先进模型,旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理,特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。AquaCrop 不仅包含一个全面的数据库,还提供了用户友好的接口,使得它在实际应用中极为便捷。

模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。通过对作物的水分需求和供应的精确计算,AquaCrop 能够帮助提高水资源的使用效率,优化作物产量和质量。

为了让更多的科研人员和农业工作者能够深入理解AquaCrop模型的原理,有效地运用这一工具,将详细讲解AquaCrop模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。通过模型的实践操作和结果分析,让参与者能够不仅理解模型背后的科学原理,同时掌握如何在实际工作中应用模型来解决问题。此外,还将深入探讨如何通过修改模型代码来定制和优化模型,以适应特定的研究需求或解决特定的农业问题。

【内容简介】:

专题一、模型原理与数据要求
1. AquaCrop模型的应用范围

2. 模型基本原理与计算框架

3.模型输入数据要求

4.模型应用实例简介

专题二、模型数据准备
1.气象数据准备:包括温度、降水量、蒸发量等。

2.土壤数据制备:土壤类型、含水量、水分保持能力

3.农作物数据制备:作物类型、生长周期、水分需求

4.管理措施的输入:灌溉方式、施肥计划、病虫害管理。

专题三、模型运行及结果分析
1.模型运行步骤

2.模型输出

3.模型结果分析(在线版)

专题四、参数分析
1.敏感性分析方法

2.模型敏感参数

3.参数的不确定性分析方法

4.参数的不确定性分析

5.参数调优建议

专题五、源代码分析
1.现代Fortran基础

2.模型Fortran代码编译

3.模型代码结构

4.模型入口分析

5.模型主要计算功能分析
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/weixin_48230888/article/details/138910386

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值