Chat2DB+ChatGLM自然语言转sql部署

Chat2DB+ChatGLM自然语言转sql

Chat2DB官网地址:https://chat2db.ai/docs/

ChatGLM官网地址:https://github.com/THUDM/ChatGLM-6B

chatGLM搭建教程地址:https://blog.csdn.net/qq_31136513/article/details/130405007

配置ChtaGLM

ChatGLM要用API部署的启动方式(git上面有文档)
在这里插入图片描述

1.安装依赖

pip install fastapi uvicorn

2.修改api.py启动文件

在这里插入图片描述

tokenizer = AutoTokenizer.from_pretrained("D:\AI\code\ChatGLM\model\chatglm2-6b", trust_remote_code=True)

model = AutoModel.from_pretrained("D:\AI\code\ChatGLM\model\chatglm2-6b", trust_remote_code=True).half().quantize(4).cuda()

3.启动完成测试根据接口调用大模型是否成功

POST http://127.0.0.1:8000

Body {"prompt":"根据score表和student表查一下name为David的成绩","history":[]}

在这里插入图片描述

配置Chta2DB

1.自定义url为上面ChatGLM的API接口 http://127.0.0.1:8000/

在这里插入图片描述

2.自然语言转sql

在这里插入图片描述

3.目前返回的是一个json这个问题,如果需要解决,则可以试着重写接口来对返回结果集进行抽取

如下为标准的模型返回的结果

在这里插入图片描述

这是开源模型作者提供的key测试获取的标准的模型返回的结果

在这里插入图片描述

参考资源链接:[Chat2DB:开源AI驱动的数据库分析神器](https://wenku.csdn.net/doc/4oe8e5bovj?utm_source=wenku_answer2doc_content) 为了帮助你更好地利用Chat2DB实现自然语言SQL换,并确保换结果的准确性和效率,我强烈推荐参考《Chat2DB:开源AI驱动的数据库分析神器》。本书详细介绍了如何操作Chat2DB,并确保你能够高效且准确地使用它。 当使用Chat2DB时,你可以通过其自然语言处理(AIGC)功能直接输入你的业务查询语句,而无需编写复杂的SQL代码。Chat2DB会将这些自然语言查询语句换为精确的SQL语句。为确保换结果的准确性,你可以参考书中提供的最佳实践,例如使用明确且具体的语言描述查询需求,避免使用含糊不清的表达。 为了提高换效率,Chat2DB内置了SQL优化建议功能。在生成SQL之后,你可以利用这一功能检查并优化生成的SQL代码,从而提升查询效率。此外,书中还介绍了如何根据Chat2DB提供的反馈对查询语句进行迭代和改进,确保每次都能获得更好的性能。 另外,书中还介绍了一些高级技巧,比如如何为常用的查询创建模板,以及如何结合具体数据库的特性进行优化,这些都能帮助你进一步提升利用Chat2DB进行数据分析的效率和准确性。 在完成学习后,为了更全面地掌握Chat2DB的应用,除了书中提供的知识,还可以进一步探索其社区支持和在线文档,这些资源将助你在未来遇到更复杂的数据分析问题时能够游刃有余。 参考资源链接:[Chat2DB:开源AI驱动的数据库分析神器](https://wenku.csdn.net/doc/4oe8e5bovj?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值