SFFAI分享 | 杨传广:高效设计图像分类模型:混合连通性的门限卷积神经网络【附PPT与视频资料】...

本文介绍了杨传广设计的HCGNet模型,该模型结合ResNet和DenseNet优势,解决了两者的缺陷,通过混合连通性和门限机制提高图像分类效率。HCGNet在CIFAR和ImageNet数据集上表现优越,且具有优秀的特征迁移能力,适用于目标检测和分割任务。
摘要由CSDN通过智能技术生成

图像分类(Image Classification)是使用计算机视觉和机器学习算法从图像中抽取意义的任务。这个操作可以为一张图像分配一个标签,或者也可以解释图像的内容并且返回一个人类可读的句子。图像分类是一个非常大的研究领域,随着深度学习的普及,它还在继续发展。目前此任务较为基础的模型主要为ResNet和DenseNet,《SFFAI69—图像分类专题》讲者杨传广设计了一个全新的图像分类模型,解决了两者的缺陷并结合了两者的优势,十分具有启发性。

关注文章公众号

对话框回复"SFFAI69"

入交流群/推荐论文下载/录播视频观看/讲者PPT下载

作者介绍


杨传广,中科院计算所硕士研究生,主要研究方向为基于图像分类的模型设计与优化,以第一作者在 AAAI-2020会议上发表论文。

杨传广

论文下载地址:

https://aaai.org/Papers/AAAI/2020GB/AAAI-YangC.5011.pdf

源代码地址:

https://github.com/winycg/HCGNet

详细的中文翻译:

https://blog.csdn.net/winycg/article/details/106644890

引言

图像分类是计算机视觉中的基础任务,基于图像分类的深度卷积神经网络模型也在不断地被设计和优化,来达到更好的准确率和更低的复杂度。在图像分类的基础模型中,有两大经典高效的模型,分别是ResNet和DenseNet,两者在图像分类任务上具有优秀的表现同时具有较小的复杂度,但是两者都各具有缺陷。为了解决两者的缺陷并同时结合两者的优势,本文提出了一个高效的混合特征连通性模式用于图像分类,此外,本文还结合了现有的注意力机制操作构造了遗忘门和更新门来实现旧特征和新特征的有效混合。基于上述的结构,本文提出了一个全新的图像分类模型,名为HCGNet。在CIFAR和ImageNet数据集上的实验结果表明我们的模型以更低的复杂度超过了现有的人工设计的图像分类模型,同时在MS-COCO数据集上的实验结果验证了本模型具有优秀的特征迁移能力。

主要的贡献:

1.本文提出了一种混合性的特征连通模式来促进特征重用;

2.本文结合注意力机制引入遗忘门和更新门实现特征的有效混合;

3.本文提出的模型不仅在图像分类任务取得卓越的表现,而且在目标检测和分割任务上具有优秀的迁移能力。


方法

2.1混合连通性

重访ResNet和DenseNet

(1)参数共享:ResNet中的residual连接伴随着参数共享机制,DenseNet中的dense连接没有伴随着参数共享机制。

(2)特征学习:ResNet高效的特征重用,低参数冗余性,太多的相加特征聚合会造成特征表示的坍塌和组织信息流动;DenseNet保护了先前的所有信息,并且具有共同学习机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值