AI测试入门:使用 Locust 对 AI 智能体(Agent)进行性能测试
- 1.Token 数量的重要性
- 2. 安装 Locust
- 3. 编写 Locust 测试脚本
- 4. 运行 Locust 测试
-
- 4.1 有头模式运行
- 4.2 无头模式运行
- 5. 分析 Locust 结果
- 6. 性能测试的测试步骤
- 7. 案例分析
-
- 7.1 对话型智能体的 Token 数量测试
- 7.2. 推荐系统的 Token 数量测试
- 7.3. 自动驾驶系统的 Token 数量测试
- 总结
1.Token 数量的重要性
在 AI 智能体(特别是基于大语言模型的智能体)的性能测试中,token
数量是一个重要的度量指标,它反映了模型在生成文本时的输出规模。测试 token
数量的主要目的包括:
- 评估生成能力: 了解模型在特定请求下生成的
token
数量,评估其输出能力。 - 监控资源消耗: 测量生成
token
数量与系统资源消耗(如内存、计算时间)的关系,确保系统的资源使用在可接受范围内。 - 优化模型表现: 根据
token
数量的测试结果进行模型优化,以提高生成效率和减少资源消耗。
2. 安装 Locust
首先,需要确保 Locust 已安装,可以使用以下命令进行安装:
pip install locust
等待安装完成: