个人本地部署大模型挂载搭建RAG知识库实战记录

如题,实际跑一遍发现已经非常简便快捷了,各类文章也很成熟,写一篇记录一下,为后续写开发文档存稿一下,仅供参考。适合想自己本地拉一个模型来简单跑跑或者DIY的AI入门学者

知识面有限,硬件需求不作赘述,提供一个大部分能跑的版本。

本文是私有化部署,效果其实应该跟市面上很多发布AI应用的第三方平台差不多,如果不想私有化本地化可以选择那些平台,字节的扣子、智谱之类的,没用过,不评价。

一、Ollama

用来快速拉模型和部署模型的,支持llama、qwen、Gemma等模型,很方便,下一个这个就完成80%了。

链接:Ollamaicon-default.png?t=O83Ahttps://ollama.com/

支持Windows, Linux, MacOS

下载完之后默认端口是11434,可以在win+R输入sysdm.cpl后的环境变量里面的高级选项卡-环境变量里修改端口,cache也要加一下,origin设为*可以解决跨域问题(遇到的一个小坑)

### 构建RAG大模型私有知识库 #### 使用Deepseek和Dify实现本地部署 为了在本地环境中使用Deepseek和Dify构建RAG大模型的私有知识库,需完成一系列配置与集成操作。具体过程涉及环境准备、安装必要的软件包和服务设置。 #### 环境准备 确保拥有适合运行大型语言模型的基础架构,包括但不限于足够的计算资源(CPU/GPU)、内存空间及存储容量。此外,还需准备好支持Python编程的语言环境及相关依赖项[^3]。 #### 安装Deepseek-R1 按照官方文档指导,在服务器上部署Deepseek-r1版本的大规模预训练模型实例。此步骤通常涉及到下载权重文件、调整参数配置以适应硬件条件等操作[^1]。 #### 配置Dify平台 通过Dify提供的API接口或命令行工具连接已部署好的Deepseek-r1服务端口,使两者之间建立有效的通信链路。此时可以测试二者之间的连通性,确认消息传递正常无误[^2]。 #### 创建嵌入式索引 针对目标领域内的文本资料集执行向量化处理,生成对应的embedding表示形式,并将其导入至数据库中形成结构化的索引体系。这一环节对于后续查询效率至关重要。 #### 实现检索增强机制 设计合理的算法逻辑,使得当用户发起咨询请求时,系统能够快速定位最相关的背景信息片段作为辅助材料输入给LLM进行响应合成;同时保持对话流畅性和自然度不受影响。 ```python from dify import DifyClient import deepseek as ds client = DifyClient(api_key='your_api_key') model = ds.load_model('path_to_deepseek_r1') def get_context(query): embeddings = model.encode([query]) results = client.search(embeddings=embeddings, top_k=5) context = " ".join([r['text'] for r in results]) return context ``` 上述代码展示了如何利用Dify客户端API获取与查询语句相似度最高的几个条目,并将它们组合成一段连续的文字串供进一步分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值