利用Matlab求解Stewart并联机构位置正解,方法为牛顿迭代法

这篇博客主要记录了作者在毕设中使用Matlab通过牛顿迭代法求解Stewart并联机构的位置正解过程。具体步骤包括建立方程组、求解雅可比矩阵和运用牛顿迭代法。参考书籍为《数值计算方法与算法》,并提供了相关代码文件:fun.m、dfun.m和newton.m。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做毕设,有些设计片段想记录下来。

这次为利用Matlab求解Stewart并联机构位置正解,方法为牛顿迭代法。

具体公式可参考《数值计算方法与算法》科学出版社。

方程组可由位置反解公式建立。

给出具体代码:

(1)fun.m建立方程组

function f=fun(x)
S_cooedinate =  [ 295.8040, 50, 0 ;
                    -104.6002, 281.1682, 0 ;
                    -191.1933, 231.1820, 0 ;
                    -191.1933, -231.1820, 0;
                    -104.6002, -281.1682, 0 ;%静平台连接点坐标
                    295.8040, -50, 0 ];
M_coordinate = [ 140.1144 , 142.7163, 0;  
                  53.5387, 192.7008, 0;
                  -193.6531, 49.9844, 0 ;
                  -193.6531, -49.9844, 0 ;
                  53.5387, -192.7008, 0 ;
                  140.1144 , -142.7163, 0 ];%动平台连接点在动坐标系的坐标
length=[570 513 355 384 447 399]; %给定杆1-6的长度,这个长度就是动静平台连接点之间的距离。单位mm
syms X Y Z A B G ;
for i=1:6
 M_TO_S_coordinate(i,1)= cos(G) * cos(B) * M_coordinate(i, 1) + (sin(A) * sin(B) * cos(G) - cos(A)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值