为什么选择我们的CBCT牙齿数据集?
——覆盖全场景、高精度标注,赋能AI牙科研究与产品落地
在数字化口腔医疗快速发展的今天,CBCT(锥形束计算机断层扫描)已成为正畸、种植牙、牙周病诊断的核心工具。然而,高质量、多维度、精准标注的CBCT数据始终是算法研发的瓶颈。为此,我们推出业内首个面向AI开发的大规模CBCT牙齿医学数据集,专为科研机构、医疗AI企业与开发者打造,助您高效突破技术壁垒!
数据集核心优势
1. 数据规模与多样性:覆盖复杂临床场景
超5000例真实患者CBCT扫描数据,来自15家三甲医院及口腔专科诊所,涵盖正畸、种植牙、牙周炎、颞下颌关节疾病等全场景病例。
包含金属伪影、缺牙、错位牙、骨开窗等挑战性病例,数据分布贴近真实临床环境,确保模型泛化能力。
多设备兼容:数据源自美亚光电、博恩登特、八颗牙等主流国产及进口CBCT设备,适配不同成像参数。
2. 精细化标注:医学专家+AI双重校验
全自动AI分割+人工复核:每例数据均通过牙齿、牙槽骨、神经管、颌骨的逐层分割标注,Dice评分达93%以上,与放射科专家标注结果一致。
多维标注格式:提供DICOM原始数据、NIfTI分割掩码、STL三维模型(支持3D打印),以及JSON格式的结构化诊断报告。
动态全景重建支持:包含牙弓曲线全景图、横断面/冠状面多平面重建(MPR)数据,适配种植牙路径规划与正畸力学模拟。
应用场景与案例
场景1:AI辅助诊断系统开发
自动生成诊断报告:基于CBCT数据的龋齿检测、骨密度分析、种植体位置规划,误差≤0.1mm。
案例参考:某三甲医院利用本数据集训练模型,实现牙周炎骨吸收量自动测算,准确率提升30%。
场景2:数字化正畸与种植方案设计
3D咬合模拟与力学分析:结合口扫数据与CBCT颌骨模型,优化隐形矫治器的力学设计。
案例参考:某隐形矫治品牌通过本数据集优化算法,将方案设计周期从7天缩短至2小时。
场景3:医学影像算法研究
低剂量重建与伪影校正:提供原始投影数据与重建参数,支持TV最小化、深度学习去噪等算法验证。
案例参考:某高校团队基于本数据发表顶会论文,提出新型抗金属伪影重建算法,PSNR提升5dB。
如何获取数据?
关注博主,私信“CBCT”即可获得详细信息
注:本文数据已脱敏处理,仅限科研与合规商用。禁止用于任何非法用途!