第八章 向量代数与空间解析几何
第一节 向量及其线性运算
( cos α , cos β , cos γ ) = ( x ∣ r ∣ , y ∣ r ∣ , z ∣ r ∣ ) = 1 ∣ r ∣ ( x , y , z ) = e r (\cos α,\cos β,\cos γ)=(\frac{x}{|\boldsymbol r|},\frac{y}{|\boldsymbol r|},\frac{z}{|\boldsymbol r|})=\frac{1}{|\boldsymbol r|}(x,y,z)=e_{\boldsymbol r} (cosα,cosβ,cosγ)=(∣r∣x,∣r∣y,∣r∣z)=∣r∣1(x,y,z)=er
cos 2 α + cos 2 β + cos 2 γ = 1 \cos ^2α+\cos ^2β+\cos ^2γ=1 cos2α+cos2β+cos2γ=1
P r j u a = ∣ a ∣ cos φ Prj_u\boldsymbol a=|\boldsymbol a|\cos \varphi Prjua=∣a∣cosφ
第二节 数量积 向量积 混合积
一、两向量的数量积
数量积满足交换律、分配律,不满足结合律
两向量夹角: cos θ = a ∙ b ∣ a ∣ ∣ b ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \cos θ=\frac{\boldsymbol a\bullet\boldsymbol b}{|\boldsymbol a||\boldsymbol b|}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt {a_x^2+a_y^2+a_z^2}\sqrt {b_x^2+b_y^2+b_z^2}} cosθ=∣a∣∣b∣a∙b=ax2+ay2+az2bx2+by2+bz2axbx+ayby+azbz
二、两向量的向量积
向量积满足分配律,不满足交换律、结合律。
三、向量的混合积
( a × b ) ∙ c (\boldsymbol a\times \boldsymbol b)\bullet \boldsymbol c (a×b)∙c,记做 [ a b c ] [\boldsymbol a\quad \boldsymbol b\quad \boldsymbol c] [abc]
第三节 平面及其方程
一、曲面方程与空间直线
mathematica二元显函数画图:
ClearAll["Global`*"];Plot3D[Sin[x + y^2], {x, -3, 3}, {y, -2, 2}]
mathematica三元隐函数等式画图:
ClearAll["Global`*"];ContourPlot3D[
x^2 + y^2 + z^3 - 1 == 0 , {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]
mathematica空间曲线画图,参数方程:
ClearAll["Global`*"]; ParametricPlot3D[{Sin[u], Cos[u], u/10}, {u, 0,
20}]
二、平面的点法式方程
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(x−x0)+B(y−y0)+C(z−z0)=0。 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)是平面上的某个点, ( A , B , C ) (A,B,C) (A,B,C)是法向量。
三、平面的一般方程
平面的一般方程: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
平面的截距式方程: x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1
四、两平面的夹角
cos θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos θ=\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} cosθ=A12+B12+C12A22+B22+C22∣A1A2+B1B2+C1C2∣
两平面垂直:
A
1
A
2
+
B
1
B
2
+
C
1
C
2
=
0
A_1A_2+B_1B_2+C_1C_2=0
A1A2+B1B2+C1C2=0
两平面平行或重合:
A
1
A
2
=
B
1
B
2
=
C
1
C
2
\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}
A2A1=B2B1=C2C1
第四节 空间直线及其方程
一、空间直线的一般方程
f ( x ) = { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 f(x)=\begin{cases} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0 \end{cases} f(x)={A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
二、空间直线的对称式方程与参数方程
对称式方程,也叫点向式方程
x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mx−x0=ny−y0=pz−z0
直线的参数方程:
x − x 0 m = y − y 0 n = z − z 0 p = t \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t mx−x0=ny−y0=pz−z0=t
f ( x ) = { x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . f(x)=\begin{cases} x=x_0+mt,\\y=y_0+nt,\\z=z_0+pt.\end{cases} f(x)=⎩ ⎨ ⎧x=x0+mt,y=y0+nt,z=z0+pt.
三、两直线的夹角
根据方向向量计算夹角:
cos φ = ∣ m 1 m 2 + n 1 n 2 + p 1 p 2 ∣ m 1 2 + n 1 2 + p 1 2 m 2 2 + n 2 2 + p 2 2 \cos φ=\frac{|m_1m_2+n_1n_2+p_1p_2|}{\sqrt{m_1^2+n_1^2+p_1^2}\sqrt{m_2^2+n_2^2+p_2^2}} cosφ=m12+n12+p12m22+n22+p22∣m1m2+n1n2+p1p2∣
四、直线与平面的夹角
sin φ = ∣ A m + B n + C p ∣ A 2 + B 2 + C 2 m 2 + n 2 + p 2 \sin φ=\frac{|Am+Bn+Cp|}{\sqrt{A^2+B^2+C^2}\sqrt{m^2+n^2+p^2}} sinφ=A2+B2+C2m2+n2+p2∣Am+Bn+Cp∣
因为直线与平面垂直相当于直线的方向向量与平面的法向量平行,所以平面垂直相当于:
A
m
=
B
n
=
C
p
\frac{A}{m}=\frac{B}{n}=\frac{C}{p}
mA=nB=pC
因为直线与平面平行或直线在平面上相当于直线的方向向量与平面的直,所以,直线与平面平行或直线在平面上相当于
A
m
+
B
n
+
C
p
=
0
Am+Bn+Cp=0
Am+Bn+Cp=0
五、杂例
第五节 曲面及其方程
一、曲面研究的基本问题
二、旋转曲面
三、柱面
四、二次曲面
第六节 空间曲线及其方程
一、空间曲线的一般方程
{ F ( x , y , z ) = 0 , G ( x , y , z ) = 0. \begin{cases} F(x,y,z)=0,\\G(x,y,z)=0.\end{cases} {F(x,y,z)=0,G(x,y,z)=0.
二、空间曲线的参数方程
{ x = x ( t ) , y = y ( t ) , z = z ( t ) . \begin{cases} x=x(t),\\y=y(t),\\z=z(t).\end{cases} ⎩ ⎨ ⎧x=x(t),y=y(t),z=z(t).
三、空间曲线在坐标面上的投影
第九章 多元函数微分法及其应用
第一节 多元函数的基本概念
一、平面点集 n维空间
内点、外点、边界点
聚点
开集、闭集
二、多元函数的概念
三、多元函数的极限
四、多元函数的连续性
有界性与最大值最小值定理
介值定理
一致连续性定理
第二节 偏导数
一、偏导数的定义及其计算法
二、高阶偏导数
第三节 全微分
一、全微分的定义
必要条件
充分条件
二、全微分在近似计算中的应用
第四节 多元复合函数的求导法则
第五节 隐函数的求导公式
一、一个方程的情形
F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
隐函数求导公式:
d y d x = − F x F y \frac{dy}{dx}=-\frac{F_x}{F_y} dxdy=−FyFx
d 2 y d x 2 = − F x x F y 2 − 2 F x y F x F y + F y y F x 2 F y 3 \frac{d^2y}{dx^2}=-\frac{F_{xx}F_y^2-2F_{xy}F_xF_y+F_{yy}F_x^2}{F_y^3} dx2d2y=−Fy3FxxFy2−2FxyFxFy+FyyFx2
二、方程组的情形
{ F ( x , y , u , v ) = 0 , G ( x , y , u , v ) = 0. \begin{cases} F(x,y,u,v)=0,\\G(x,y,u,v)=0.\end{cases} {F(x,y,u,v)=0,G(x,y,u,v)=0.
J = ∂ ( F , G ) ∂ ( u , v ) = ∣ ∂ F ∂ u ∂ F ∂ v ∂ G ∂ u ∂ G ∂ v ∣ J=\frac{∂(F,G)}{∂(u,v)}=\begin{vmatrix} \frac{∂F}{∂u} & \frac{∂F}{∂v} \\ \frac{∂G}{∂u} & \frac{∂G}{∂v} \end{vmatrix} J=∂(u,v)∂(F,G)= ∂u∂F∂u∂G∂v∂F∂v∂G
第六节 多元函数微分学的几何应用
一、一元向量值函数及其导数
二、空间曲线的切线与法平面
三、曲线的切平面与法线
第七节 方向导数与梯度
一、方向导数
二、梯度
第八节 多元函数的极值及其求法
一、多元函数的极值及最大值与最小值
二、条件极值 拉格朗日乘数法
第九节 二元函数的泰勒公式
一、二元函数的泰勒公式
二、极值充分条件的证明
第十节 最小二乘法
第十章 重积分
第一节 二重积分的概念与性质
一、二重积分的概念
二、二重积分的性质
∬ D f ( x , y ) d x d y = ∬ D [ f ( ρ cos θ , ρ sin θ ) ρ d ρ d θ \iint_{D}f(x,y)dxdy=\iint_{D}[f(ρ\cos θ,ρ\sin θ)ρdρdθ ∬Df(x,y)dxdy=∬D[f(ρcosθ,ρsinθ)ρdρdθ
三、二重积分的换元法
T : x = x ( u , v ) , y = y ( u , v ) T:x=x(u,v),y=y(u,v) T:x=x(u,v),y=y(u,v)
∬ D f ( x , y ) d x d y = ∬ D ′ f [ ( x ( u , v ) , y ( u , v ) ) ] ∣ J ( u , v ) ∣ d u d v \iint_{D}f(x,y)dxdy=\iint_{D'}f[(x(u,v),y(u,v))]|J(u,v)|dudv ∬Df(x,y)dxdy=∬D′f[(x(u,v),y(u,v))]∣J(u,v)∣dudv
第二节 二重积分的计算法
一、利用直角坐标计算二重积分
∬ D f ( x , y ) d δ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \iint_{D}f(x,y)dδ=\int_a^bdx\int_{φ_1(x)}^{φ_2(x)}f(x,y)dy ∬Df(x,y)dδ=∫abdx∫φ1(x)φ2(x)f(x,y)dy
二、利用极坐标计算二重积分
∬ D f ( x , y ) d x d y = ∬ D [ f ( ρ cos θ , ρ sin θ ) ρ d ρ d θ \iint_{D}f(x,y)dxdy=\iint_{D}[f(ρ\cos θ,ρ\sin θ)ρdρdθ ∬Df(x,y)dxdy=∬D[f(ρcosθ,ρsinθ)ρdρdθ
三、二重积分的换元法
T : x = x ( u , v ) , y = y ( u , v ) T:x=x(u,v),y=y(u,v) T:x=x(u,v),y=y(u,v)
∬ D f ( x , y ) d x d y = ∬ D ′ f [ ( x ( u , v ) , y ( u , v ) ) ] ∣ J ( u , v ) ∣ d u d v \iint_{D}f(x,y)dxdy=\iint_{D'}f[(x(u,v),y(u,v))]|J(u,v)|dudv ∬Df(x,y)dxdy=∬D′f[(x(u,v),y(u,v))]∣J(u,v)∣dudv
第三节 三重积分
一、三重积分的概念
∭ Ω f ( x , y , z ) d x d y d z \iiint_{Ω}f(x,y,z)dxdydz ∭Ωf(x,y,z)dxdydz
二、三重积分的计算
1.利用直角坐标计算三重积分
2.利用柱面坐标计算三重积分
3.利用球面坐标计算三重积分
第四节 重积分的应用
一、曲面的面积
二、质心
三、转动惯量
四、引力
第五节 含参变量的积分
第十一章 曲线积分与曲面积分
第一节 对弧长的曲线积分
一、对弧长的曲线积分的概念与性质
二、对弧长的曲线积分的计算法
第二节 、对坐标的曲线积分
一、对坐标的曲线积分的概念与性质
二、对坐标的曲线积分的计算法
三、两类曲线积分之间的联系
第三节 格林公式的应用
一、格林公式
二、平面上曲线积分与路径无关的条件
三、二元函数的全微分求积
四、曲线积分的基本定理
第四节 对面积的曲面积分
一、对面积的曲面积分的概念与性质
二、对面积的曲面积分的计算法
第五节 对坐标的曲面积分
一、对坐标的曲面积分的概念与性质
二、对坐标的曲面积分的计算法
三、两类曲面积分之间的联系
第六节 高斯公式 通量与散度
一、高斯公式
二、沿任意闭曲面的曲面积分为零的条件
三、通量与散度
第七节 斯托克斯公式 环流量与旋度
一、斯托克斯公式
二、空间曲线积分与路径无关的条件
三、环流量与旋度
第十二章 无穷级数
第一节 常数项级数概念和性质
等比级数
调和级数
级数收敛的必要条件是一般项 u n u_n un的极限是0
三、柯西审敛原理
柯西审敛原理:级数
∑
n
=
1
∞
u
n
\sum_{n=1}^\infty u_n
∑n=1∞un收敛的充分必要条件是:对于任意给定的正数
ϵ
ϵ
ϵ,总存在正整数
N
N
N,使得当
n
>
N
n>N
n>N时,对于任意的正整数
p
p
p,都有
∣
u
n
+
1
+
u
n
+
2
+
.
.
.
+
u
n
+
p
∣
<
ϵ
|u_{n+1}+u_{n+2}+...+u_{n+p}|<ϵ
∣un+1+un+2+...+un+p∣<ϵ
成立。
第二节 常数项级数的审敛法
一、正项级数及其审敛法
直接求和求极限,极限存在说明收敛。
比较审敛法(两个级数做对比,已知其中一个级数是发散还是收敛):发散=胖子,收敛=瘦子。
比值审敛法,也叫达朗贝尔判别法。自己和自己比较。 lim n → ∞ u n + 1 u n = ρ \lim_{n\to ∞}\frac{u_{n+1}}{u_n}=ρ limn→∞unun+1=ρ。当 ρ < 1 ρ<1 ρ<1时收敛。当 ρ > 1 ρ>1 ρ>1时发散。当 ρ = 1 ρ=1 ρ=1时,可能发散可能收敛。
根值审敛法,柯西判别法
极限审敛法:
1.
lim
n
→
∞
n
u
n
=
l
>
0
或
∞
\lim_{n\to ∞}nu_n=l>0或∞
limn→∞nun=l>0或∞,此级数发散,否则收敛。
2.如果
p
>
1
p>1
p>1,
lim
n
→
∞
n
p
u
n
=
l
,
(
0
⩽
l
<
+
∞
)
\lim_{n\to ∞}n^pu_n=l,(0⩽l<+∞)
limn→∞npun=l,(0⩽l<+∞),此级数收敛。
二、交错级数及其审敛法
交错级数,每一项都是正负交替的。
莱布尼茨定理:如果交错级数
∑
n
=
1
∞
(
−
1
)
n
−
1
u
n
\sum_{n=1}^\infty (-1)^{n-1}u_n
∑n=1∞(−1)n−1un满足条件:
1.
u
n
⩾
u
n
+
1
u_n⩾u_{n+1}
un⩾un+1;
2.
lim
n
→
∞
u
n
=
0
\lim_{n\to ∞}u_n=0
limn→∞un=0,
那么级数收敛,且其和
s
<
=
u
1
s<=u_1
s<=u1,其余项的
∣
r
n
∣
⩽
u
n
+
1
|r_n|⩽u_{n+1}
∣rn∣⩽un+1。
三、绝对收敛和条件收敛
绝对收敛是 u n u_n un每项取绝对值。如果 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^\infty |u_n| ∑n=1∞∣un∣收敛,那么 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑n=1∞un也收敛。
四、绝对收敛级数的性质
第三节 幂级数
二、幂级数及其收敛性
阿贝尔定理:如果级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑n=0∞anxn当 x = x 0 x=x_0 x=x0( x 0 ≠ 0 x_0\neq0 x0=0)时收敛,那么适合不等式 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| ∣x∣<∣x0∣的一切 x x x使这幂级数绝对收敛。反之,如果级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑n=0∞anxn当 x = x 0 x=x_0 x=x0( x 0 ≠ 0 x_0\neq0 x0=0)时发散,那么适合不等式 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| ∣x∣>∣x0∣的一切 x x x使这幂级数发散。
∑
n
=
0
∞
a
n
x
n
\sum_{n=0}^\infty a_nx^n
∑n=0∞anxn这是幂级数,
lim
n
=
0
∞
∣
a
n
+
1
a
n
∣
=
ρ
\lim_{n=0}^\infty |\frac{a_{n+1}}{a_n}|=ρ
limn=0∞∣anan+1∣=ρ,
收敛半径
R
=
{
1
ρ
,
ρ
≠
0
,
+
∞
,
ρ
=
0
,
0
,
ρ
=
+
∞
。
R=\begin{cases} \frac{1}{ρ},ρ\neq0, \\+∞,ρ=0, \\ 0,ρ=+∞ 。\end{cases}
R=⎩
⎨
⎧ρ1,ρ=0,+∞,ρ=0,0,ρ=+∞。
三、幂级数的运算
第四节 函数展开成幂级数
第五节 函数的幂级数展开式的应用
一、近似计算
二、微分方程的幂级数解法
三、欧拉公式
欧拉公式:
e
x
i
=
c
o
s
x
+
i
s
i
n
x
e^{xi}=cos x+i sinx
exi=cosx+isinx
这两个式子也叫欧拉公式:
{
c
o
s
x
=
e
x
i
+
e
−
x
i
2
s
i
n
x
=
e
x
i
−
e
−
x
i
2
i
\begin{cases} cos x=\frac{e^{xi}+e^{-xi}}{2} \\ sinx=\frac{e^{xi}-e^{-xi}}{2i}\end{cases}
{cosx=2exi+e−xisinx=2iexi−e−xi