第八章 向量代数与空间解析几何
第一节 向量及其线性运算
( cos α , cos β , cos γ ) = ( x ∣ r ∣ , y ∣ r ∣ , z ∣ r ∣ ) = 1 ∣ r ∣ ( x , y , z ) = e r (\cos α,\cos β,\cos γ)=(\frac{x}{|\boldsymbol r|},\frac{y}{|\boldsymbol r|},\frac{z}{|\boldsymbol r|})=\frac{1}{|\boldsymbol r|}(x,y,z)=e_{\boldsymbol r} (cosα,cosβ,cosγ)=(∣r∣x,∣r∣y,∣r∣z)=∣r∣1(x,y,z)=er
cos 2 α + cos 2 β + cos 2 γ = 1 \cos ^2α+\cos ^2β+\cos ^2γ=1 cos2α+cos2β+cos2γ=1
P r j u a = ∣ a ∣ cos φ Prj_u\boldsymbol a=|\boldsymbol a|\cos \varphi Prjua=∣a∣cosφ
第二节 数量积 向量积 混合积
一、两向量的数量积
数量积满足交换律、分配律,不满足结合律
两向量夹角: cos θ = a ∙ b ∣ a ∣ ∣ b ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \cos θ=\frac{\boldsymbol a\bullet\boldsymbol b}{|\boldsymbol a||\boldsymbol b|}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt {a_x^2+a_y^2+a_z^2}\sqrt {b_x^2+b_y^2+b_z^2}} cosθ=∣a∣∣b∣a∙b=ax2+ay2+az2bx2+by2+bz2axbx+ayby+azbz
二、两向量的向量积
向量积满足分配律,不满足交换律、结合律。
三、向量的混合积
( a × b ) ∙ c (\boldsymbol a\times \boldsymbol b)\bullet \boldsymbol c (a×b)∙c,记做 [ a b c ] [\boldsymbol a\quad \boldsymbol b\quad \boldsymbol c] [abc]
第三节 平面及其方程
一、曲面方程与空间直线
mathematica二元显函数画图:
ClearAll["Global`*"];Plot3D[Sin[x + y^2], {x, -3, 3}, {y, -2, 2}]
mathematica三元隐函数等式画图:
ClearAll["Global`*"];ContourPlot3D[
x^2 + y^2 + z^3 - 1 == 0 , {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]
mathematica空间曲线画图,参数方程:
ClearAll["Global`*"]; ParametricPlot3D[{Sin[u], Cos[u], u/10}, {u, 0,
20}]
二、平面的点法式方程
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(x−x0)+B(y−y0)+C(z−z0)=0。 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)是平面上的某个点, ( A , B , C ) (A,B,C) (A,B,C)是法向量。
三、平面的一般方程
平面的一般方程: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
平面的截距式方程: x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1
四、两平面的夹角
cos θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos θ=\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} cosθ=A12+B12+C12A22+B22