Chapter22:数列和级数(基本概念)
22.数列和级数(基本概念)
22.1 数列的收敛和发散
通项 a n a_n an 的极限存在
意味着
a
n
a_n
an 在开始时可能有稍许徘徊,最后会越来越趋近于
L
L
L 并保持这种趋势。
若存在这样的
L
L
L ,则数列
{
a
n
}
\{a_n\}
{an} 收敛,否则发散
22.1.1 数列和函数的联系
数列继承了函数的极限性质
1.数列的和、差、积、商
两个收敛数列
{
a
n
}
\{a_n\}
{an} 和
{
a
n
}
\{a_n\}
{an},当
n
→
0
n\rightarrow 0
n→0 时,
a
n
→
L
,
b
n
→
M
a_n\rightarrow L,b_n\rightarrow M
an→L,bn→M,则其和
a
n
+
b
n
a_n+b_n
an+bn 构成一个收敛于
L
+
M
L+M
L+M 的新数列。对于差、积、商和常数的积同样适用
2.夹逼定理对数列也适用
若 c n ≤ a n ≤ b n c_n \leq a_n \leq b_n cn≤an≤bn,且当 n → ∞ n\rightarrow \infty n→∞时, b n → L , c n → L b_n\rightarrow L,c_n\rightarrow L bn→L,cn→L,则当 n → ∞ n\rightarrow \infty n→∞ 时, a n → L a_n\rightarrow L an→L
例子:
3.连续函数保持极限
假设当 n → ∞ n\rightarrow \infty n→∞ 时 a n → L a_n\rightarrow L an→L,则如果函数 f f f 在 x = L x=L x=L 连续,我们说当 n → ∞ n\rightarrow \infty n→∞ 时 f ( a n ) → f ( L ) f(a_n)\rightarrow f(L) f(an)→f(L)
例子:
4.洛必达法则应用于数列
注意:数列中 n n n 为整数,所以不能对关于 n n n 的量 a n a_n an 求导
函数求导的目的:当对函数 f f f 求关于变量 x x x 的导数时,只是为了看一下当对 x x x 做极小变动时函数 f ( x ) f(x) f(x) 有什么变化
不能对数列中 n n n 做极小变动,因为极小变动后它就不是整数了
解决办法:找出数列对应的函数,先对函数应用洛必达法则,求出极限值,再求得 lim n → ∞ a n \lim_{n\rightarrow \infty}a_n n→∞liman
例子:
22.1.2 两个重要数列
常见数列极限
22.1.2.1 第一个数列
等比数列通项,其中
r
r
r 为公比
a
n
=
r
n
a_n=r^n
an=rn
等比数列,首项从
a
r
0
=
a
ar^0=a
ar0=a 开始
a
n
=
a
r
n
a_n=ar^n
an=arn
22.1.2.2 第二个数列
22.2 级数的收敛与发散
无穷数列
无穷级数
为理解级数的极限,构造部分和数列
22.2.1 几何级数(理论)
22.3 第 n 项判别法(理论)
大白的目的:控制每一步的步长(
a
n
a_n
an)最终使自己到达极限位置(要求要走很多步)
例子:
第
n
n
n 项判别法的注意事项:
1.第
n
n
n 项判别法不能用于级数收敛性的判别!
2.只有当数列通项 (
a
n
a_n
an) 的极限不为0时,才可使用第 n 项判别法
3.第
n
n
n 项判别法告诉我们,任何公比不在
(
−
1
,
1
)
(-1,1)
(−1,1) 里的几何级数均发散
22.4 无穷级数和反常积分的性质
反常积分的四个判别法对无穷级数仍适用
22.4.1 比较判别法(理论)
两个不同数列之间(区别于比式判别法的同一个数列的相邻项)
例子:
22.4.2 极限比较判别法(理论)
例子:
22.4.3 p判别法(理论)
与反常积分的p判别法一样(只是这里将积分符号换为了求和符号)
例子:
∑
n
=
1
∞
1
n
=
1
+
1
2
+
1
3
+
⋯
+
1
n
\sum_{n=1}^\infty\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
n=1∑∞n1=1+21+31+⋯+n1
例子:
调和级数(p=1)
22.4.4 绝对收敛判别法
例1:
例2:
22.5 级数的新判别法
22.5.1 比式判别法(相邻项的比)(达朗贝尔判别法)
同一个数列的相邻项(区别于比较判别法的两个不同数列间)
例子:
22.5.2 根式判别法(第n项绝对值的n次方根)(柯西判别法)
22.5.3 积分判别法(级数与积分比较)(柯西积分审敛法)
22.5.4 交错级数判别法(莱布尼茨判别法)
例子:
条件收敛
例子:
例子: