数列和级数(基本概念)

22.数列和级数(基本概念)

22.1 数列的收敛和发散

通项 a n a_n an 的极限存在


意味着 a n a_n an 在开始时可能有稍许徘徊,最后会越来越趋近于 L L L保持这种趋势
若存在这样的 L L L ,则数列 { a n } \{a_n\} {an} 收敛,否则发散



22.1.1 数列和函数的联系

数列继承了函数的极限性质

1.数列的和、差、积、商
两个收敛数列 { a n } \{a_n\} {an} { a n } \{a_n\} {an},当 n → 0 n\rightarrow 0 n0 时, a n → L , b n → M a_n\rightarrow L,b_n\rightarrow M anLbnM,则其和 a n + b n a_n+b_n an+bn 构成一个收敛于 L + M L+M L+M 的新数列。对于差、积、商和常数的积同样适用

2.夹逼定理对数列也适用

c n ≤ a n ≤ b n c_n \leq a_n \leq b_n cnanbn,且当 n → ∞ n\rightarrow \infty n时, b n → L , c n → L b_n\rightarrow L,c_n\rightarrow L bnLcnL,则当 n → ∞ n\rightarrow \infty n 时, a n → L a_n\rightarrow L anL

例子:

3.连续函数保持极限

假设当 n → ∞ n\rightarrow \infty n a n → L a_n\rightarrow L anL,则如果函数 f f f x = L x=L x=L 连续,我们说当 n → ∞ n\rightarrow \infty n f ( a n ) → f ( L ) f(a_n)\rightarrow f(L) f(an)f(L)

例子:

4.洛必达法则应用于数列

注意:数列中 n n n 为整数,所以不能对关于 n n n 的量 a n a_n an 求导

函数求导的目的:当对函数 f f f 求关于变量 x x x 的导数时,只是为了看一下当对 x x x 做极小变动时函数 f ( x ) f(x) f(x) 有什么变化

不能对数列中 n n n 做极小变动,因为极小变动后它就不是整数了

解决办法:找出数列对应的函数,先对函数应用洛必达法则,求出极限值,再求得 lim ⁡ n → ∞ a n \lim_{n\rightarrow \infty}a_n nliman

例子:

22.1.2 两个重要数列

常见数列极限

22.1.2.1 第一个数列

等比数列通项,其中 r r r 为公比
a n = r n a_n=r^n an=rn

等比数列,首项从 a r 0 = a ar^0=a ar0=a 开始
a n = a r n a_n=ar^n an=arn

22.1.2.2 第二个数列

22.2 级数的收敛与发散


无穷数列

无穷级数

为理解级数的极限,构造部分和数列


22.2.1 几何级数(理论)

22.3 第 n 项判别法(理论)



大白的目的:控制每一步的步长( a n a_n an)最终使自己到达极限位置(要求要走很多步)



例子:

n n n 项判别法的注意事项:

1.第 n n n 项判别法不能用于级数收敛性的判别!
2.只有当数列通项 ( a n a_n an) 的极限不为0时,才可使用第 n 项判别法
3.第 n n n 项判别法告诉我们,任何公比不在 ( − 1 , 1 ) (-1,1) (1,1) 里的几何级数均发散

22.4 无穷级数和反常积分的性质

反常积分的四个判别法对无穷级数仍适用

22.4.1 比较判别法(理论)

两个不同数列之间(区别于比式判别法的同一个数列的相邻项)


例子:

22.4.2 极限比较判别法(理论)


例子:

22.4.3 p判别法(理论)

与反常积分的p判别法一样(只是这里将积分符号换为了求和符号)


例子:
∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + ⋯ + 1 n \sum_{n=1}^\infty\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} n=1n1=1+21+31++n1

例子:

调和级数(p=1)

22.4.4 绝对收敛判别法


例1:

例2:

22.5 级数的新判别法

22.5.1 比式判别法(相邻项的比)(达朗贝尔判别法)

同一个数列的相邻项(区别于比较判别法的两个不同数列间)


例子:

22.5.2 根式判别法(第n项绝对值的n次方根)(柯西判别法)

22.5.3 积分判别法(级数与积分比较)(柯西积分审敛法)

22.5.4 交错级数判别法(莱布尼茨判别法)

例子:

条件收敛


例子:

例子:

22.6 总结

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值