体积、弧长和表面积

本文详细介绍了利用圆盘法和壳法求解旋转体体积的方法,包括绕不同轴旋转的情况。此外,还探讨了如何计算曲线的弧长以及旋转体的表面积,提供了多个实例来展示这些方法的实际应用。内容涵盖定积分在解决不规则形状体积问题中的应用,以及在处理参数化曲线和速率问题时的技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

29.体积、弧长和表面积

29.1 旋转体的体积

求旋转体体积的两种方法:圆盘法和壳法

29.1.1 圆盘法(切片法)

既可用于绕 x x x 轴的旋转体,也可用于绕 y y y 轴的旋转体

下图以绕 x 轴为例




29.1.2 壳法

既可用于绕 x x x 轴的旋转体,也可用于绕 y y y 轴的旋转体

下图以绕 y 轴为例




π y ( ( x + d x ) 2 − x 2 ) = 2 π x y d x + π y ( d x ) 2 \pi y((x+dx)^2-x^2)=2\pi xydx+\pi y(dx)^2 πy((x+dx)2x2)=2πxydx+πy(dx)2
( d x ) 2 (dx)^2 (dx)2太小,可以忽略不计,即 ( d x ) 2 = 0 (dx)^2=0 (dx)2=0
π y ( ( x + d x ) 2 − x 2 ) = 2 π x y d x \pi y((x+dx)^2-x^2)=2\pi xydx πy((x+dx)2x2)=2πxydx

29.1.3 总结

圆盘法和壳法应用在由曲线、 x x x轴和两个垂线围成的区域


29.1.4 变式1:区域在曲线和 y 轴之间


如果绕 y y y 轴旋转(横坐标就是半径)

如果绕 x x x 轴旋转(纵坐标就是半径)


例子:

29.1.5 变式2:两曲线间的区域



例1:


例2:

29.1.6 变式3:绕平行于坐标轴的轴旋转

y = h y=h y=h 轴旋转

x = h x=h x=h 轴旋转

例1:
圆盘法

例2:
圆盘法

例4:
壳法

例5:
圆盘法

29.2 一般立体体积

解题思路是:





x l = h L   l = x L h \frac{x}{l}=\frac{h}{L}\\ ~\\ l=\frac{xL}{h} lx=Lh l=hxL





29.3 弧长

参数化与速率

29.4 旋转体的表面积

6.定积分的应用

6.1 切片法求不规则物体的体积(cross-section method)


6.2 圆盘法求不规则物体的体积(disk method)

6.2.1 关于水平轴旋转的物体体积



例1:

例2:

例3:

6.2.2 关于竖直轴旋转的物体体积



例1:


例2:

6.3 圆筒法求不规则物体的体积(washer method)

6.3.1 关于水平轴旋转的物体体积



例1:

例2:

6.3.2 关于竖直轴旋转的物体体积

6.4 壳法求不规则物体的体积(shell method)

例1:

例2:

例3:

例4:

壳法的总结

6.5 弧长

6.5.1 曲线的长度


6.5.2 处理 dy/dx 中的不连续

即使曲线上某些点处不存在 d y d x \frac{dy}{dx} dxdy d x d y \frac{dx}{dy} dydx 仍有可能存在

6.5 求物体表面积

6.5.1 关于 x 轴的旋转体的表面积



例1:
物体表面积=展开后长方形的面积(长为圆的周长,宽为弧长)

例2:
物体表面积=展开后长方形的面积(长为圆的周长,宽为弧长)

6.5.2 关于 y 轴的旋转体的表面积

例1:

好的!以下是关于如何用 Java 程序实现上述几何运算的详细介绍。 --- ### 圆的基本属性计算 #### 计算圆的面积 公式: `S = π * r^2` ```java double pi = 3.1415926535; double radius = 5; // 半径示例 double area = pi * Math.pow(radius, 2); System.out.println("圆的面积:" + area); ``` #### 计算圆的周 公式: `C = 2 * π * r` ```java double perimeter = 2 * pi * radius; System.out.println("圆的周:" + perimeter); ``` #### 计算圆的 公式: `L = θ / (2 * π) * C` (其中θ为度制角度) ```java double theta = Math.toRadians(60); // 将角度转换为度,例如60° double arcLength = theta / (2 * pi) * perimeter; System.out.println("圆的:" + arcLength); ``` #### 计算扇形面积 公式: `A = (θ / (2 * π)) * S` ```java double sectorArea = (theta / (2 * pi)) * area; System.out.println("扇形面积:" + sectorArea); ``` --- ### 圆柱体计算 #### 计算圆柱表面积 公式: `A = 2 * π * r * h + 2 * π * r^2` ```java double height = 10; // 高度示例 double cylinderSurfaceArea = 2 * pi * radius * height + 2 * pi * Math.pow(radius, 2); System.out.println("圆柱表面积:" + cylinderSurfaceArea); ``` #### 计算圆柱体积 公式: `V = π * r^2 * h` ```java double cylinderVolume = pi * Math.pow(radius, 2) * height; System.out.println("圆柱体积:" + cylinderVolume); ``` --- ### 圆锥体计算 #### 计算圆锥表面积 公式: `A = π * r * l + π * r^2` (l表示母线度) 假设已知高h半径r,则可以先通过勾股定理求出母线度 `l = sqrt(r^2 + h^2)`: ```java double slantHeight = Math.sqrt(Math.pow(radius, 2) + Math.pow(height, 2)); // 母线度 double coneSurfaceArea = pi * radius * slantHeight + pi * Math.pow(radius, 2); System.out.println("圆锥表面积:" + coneSurfaceArea); ``` #### 计算圆锥体积 公式: `V = (1/3) * π * r^2 * h` ```java double coneVolume = (1.0 / 3) * pi * Math.pow(radius, 2) * height; System.out.println("圆锥体积:" + coneVolume); ``` --- 以上是一个完整的基于 Java 的数学公式的实现过程。你可以将它们整合到一个主函数中,并让用户输入具体的数值来动态计算结果!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值