Chapter29:体积、弧长和表面积
29.体积、弧长和表面积
29.1 旋转体的体积
求旋转体体积的两种方法:圆盘法和壳法
29.1.1 圆盘法(切片法)
既可用于绕 x x x 轴的旋转体,也可用于绕 y y y 轴的旋转体
下图以绕 x 轴为例
29.1.2 壳法
既可用于绕 x x x 轴的旋转体,也可用于绕 y y y 轴的旋转体
下图以绕 y 轴为例
π
y
(
(
x
+
d
x
)
2
−
x
2
)
=
2
π
x
y
d
x
+
π
y
(
d
x
)
2
\pi y((x+dx)^2-x^2)=2\pi xydx+\pi y(dx)^2
πy((x+dx)2−x2)=2πxydx+πy(dx)2
(
d
x
)
2
(dx)^2
(dx)2太小,可以忽略不计,即
(
d
x
)
2
=
0
(dx)^2=0
(dx)2=0
π
y
(
(
x
+
d
x
)
2
−
x
2
)
=
2
π
x
y
d
x
\pi y((x+dx)^2-x^2)=2\pi xydx
πy((x+dx)2−x2)=2πxydx
29.1.3 总结
圆盘法和壳法应用在由曲线、 x x x轴和两个垂线围成的区域
29.1.4 变式1:区域在曲线和 y 轴之间
如果绕
y
y
y 轴旋转(横坐标就是半径)
如果绕 x x x 轴旋转(纵坐标就是半径)
例子:
29.1.5 变式2:两曲线间的区域
例1:
例2:
29.1.6 变式3:绕平行于坐标轴的轴旋转
绕 y = h y=h y=h 轴旋转
绕 x = h x=h x=h 轴旋转
例1:
圆盘法
例2:
圆盘法
例4:
壳法
例5:
圆盘法
29.2 一般立体体积
解题思路是:
x
l
=
h
L
l
=
x
L
h
\frac{x}{l}=\frac{h}{L}\\ ~\\ l=\frac{xL}{h}
lx=Lh l=hxL
29.3 弧长
参数化与速率
29.4 旋转体的表面积
6.定积分的应用
6.1 切片法求不规则物体的体积(cross-section method)
6.2 圆盘法求不规则物体的体积(disk method)
6.2.1 关于水平轴旋转的物体体积
例1:
例2:
例3:
6.2.2 关于竖直轴旋转的物体体积
例1:
例2:
6.3 圆筒法求不规则物体的体积(washer method)
6.3.1 关于水平轴旋转的物体体积
例1:
例2:
6.3.2 关于竖直轴旋转的物体体积
6.4 壳法求不规则物体的体积(shell method)
例1:
例2:
例3:
例4:
壳法的总结
6.5 弧长
6.5.1 曲线的长度
6.5.2 处理 dy/dx 中的不连续
即使曲线上某些点处不存在 d y d x \frac{dy}{dx} dxdy , d x d y \frac{dx}{dy} dydx 仍有可能存在
6.5 求物体表面积
6.5.1 关于 x 轴的旋转体的表面积
例1:
物体表面积=展开后长方形的面积(长为圆的周长,宽为弧长)
例2:
物体表面积=展开后长方形的面积(长为圆的周长,宽为弧长)
6.5.2 关于 y 轴的旋转体的表面积
例1: