详解散度、旋度(二维、三维)

本文详细介绍了向量分析中的两个关键概念——散度和旋度。散度描述了粒子在二维和三维空间中的汇合与发散情况,而旋度则表示向量场引起的旋转效应。通过具体计算公式和实例,阐述了散度为正、负和零的含义,以及二维和三维空间中旋度的正负判断。内容涵盖了从基本概念到实际计算方法,有助于深入理解这两个重要概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

散度、旋度的计算

笔记来源:Khancademy/MultiVariableDerivatives/curl-grant-video

散度是描述空气从周围汇合到某一处或从某一处流散开来程度的量

旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。 这个向量提供了向量场在这一点的旋转性质

1. 二维散度的计算

二维向量场例子
假设二维平面中的每个点为每个粒子,粒子会沿着向量场的方向移动
在某坐标点附近区域中我们观察粒子通过该区域粒子的数量变化

1.1 散度等于0

某坐标点附近的粒子,进入该区域的粒子数量等于离开该区域的粒子数量,所以它的散度 = 0 =0 =0

1.2 散度大于0

二维向量场例子
坐标原点附近的粒子,由坐标原点向外发散,这个区域内的粒子减少(都发散到了这个区域外侧)所以它的散度 > 0 \gt 0 >0


1.3 散度小于0

二维向量场例子
坐标原点附近的粒子,由外侧向坐标原点收敛,这个区域内的粒子增加(都收敛到了这个区域内侧)所以它的散度 < 0 \lt 0 <0

1.4 关于计算的具体解释

以下仅仅对散度大于0的情况作了说明,其他情况类比
如果向量函数仅仅含x方向的表达式

如果向量函数仅仅含y方向的表达式

如果向量函数含x、y方向的表达式

二维散度
v ( x , y ) = [ P ( x , y ) Q ( x , y ) ]   d i v   v ( x , y ) = ∇ ⋅ v   [ ∂ ∂ x ∂ ∂ y ] ⋅ [ P ( x , y ) Q ( x , y ) ]     d i v   v ( x , y ) = ∂ P ∂ x + ∂ Q ∂ y \boldsymbol{v}(x,y)= \left[ \begin{array}{l} P(x,y)\\ Q(x,y) \end{array} \right]\\ ~\\ div\,\boldsymbol{v}(x,y)=\nabla\cdot\boldsymbol{v}\\ ~\\ \left[ \begin{array}{l} \frac{\partial }{\partial x}\\ \frac{\partial }{\partial y} \end{array} \right] \cdot \left[ \begin{array}{l} P(x,y)\\ Q(x,y) \end{array} \right] ~\\ ~\\ div\,\boldsymbol{v}(x,y)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} v(x,y)=[P(x,y)Q(x,y)] divv(x,y)=v [xy][P(x,y)Q(x,y)]  divv(x,y)=xP+yQ
例子:

2. 三维散度的计算

三维散度
v ( x , y , z ) = [ P ( x , y ) Q ( x , y ) R ( x , y ) ]   d i v   v ( x , y ) = ∇ ⋅ v   [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ P ( x , y ) Q ( x , y ) R ( x , y ) ]     d i v   v ( x , y , z ) = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z \boldsymbol{v}(x,y,z)= \left[ \begin{array}{l} P(x,y)\\ Q(x,y)\\ R(x,y) \end{array} \right]\\ ~\\ div\,\boldsymbol{v}(x,y)=\nabla\cdot\boldsymbol{v}\\ ~\\ \left[ \begin{array}{l} \frac{\partial }{\partial x}\\ \frac{\partial }{\partial y}\\ \frac{\partial }{\partial z} \end{array} \right] \cdot \left[ \begin{array}{l} P(x,y)\\ Q(x,y)\\ R(x,y) \end{array} \right] ~\\ ~\\ div\,\boldsymbol{v}(x,y,z)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} v(x,y,z)= P(x,y)Q(x,y)R(x,y)  divv(x,y)=v  xyz P(x,y)Q(x,y)R(x,y)   divv(x,y,z)=xP+yQ+zR

3. 二维旋度的计算

旋度为正(逆时针为正)

Q(x,y)起始为负(左边的Q)随着x的增加,Q增加(Q由指向下到0到指向上)
∂ Q ∂ x > 0 \frac{\partial Q}{\partial x}\gt 0 xQ>0
P(x,y)起始为正(下边的P),随着y的增加,P减小(P由指向右到0到指向左)
∂ P ∂ y < 0 \frac{\partial P}{\partial y}\lt 0 yP<0
c u r l   v ( x , y ) = ∇ × v   ( ∂ ∂ x ∂ ∂ y ) × ( P ( x , y ) Q ( x , y ) )   ∂ ∂ x ( Q ( x , y ) ) − ∂ ∂ y ( P ( x , y ) )   c u r l   v ( x , y ) = ∂ Q ∂ x − ∂ P ∂ y curl\,\boldsymbol{v}(x,y)=\nabla×\boldsymbol{v}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \end{pmatrix}× \begin{pmatrix} P(x,y)\\ Q(x,y) \end{pmatrix}\\ ~\\ \frac{\partial}{\partial x}(Q(x,y))-\frac{\partial}{\partial y}(P(x,y))\\ ~\\ curl\,\boldsymbol{v}(x,y)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} curlv(x,y)=×v (xy)×(P(x,y)Q(x,y)) x(Q(x,y))y(P(x,y)) curlv(x,y)=xQyP
例1:


计算(3,0)点的旋度为27,旋度大于0,表示该坐标点附近逆时针旋转

例2:

计算(0,3)点的旋度为-27,旋度小于0,表示该坐标点附近顺时针旋转

4. 三维旋度的计算

三维向量场的例子

用空间某点的球表示该点附近的旋转情况
向量方向表示旋转方向,向量大小表示旋转速度大小(角速度)


三维旋度计算

c u r l   v ( x , y , z ) = ∇ × v   ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) × ( P ( x , y , z ) Q ( x , y , z ) R ( x , y , z ) )   i = [ 1 0 0 ] j = [ 0 1 0 ] k = [ 0 0 1 ]   d e t ( i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P ( x , y , z ) Q ( x , y , z ) R ( x , y , z ) )     ( ∂ ∂ y ∂ ∂ z Q ( x , y , z ) R ( x , y , z ) ) i − ( ∂ ∂ x ∂ ∂ z P ( x , y , z ) R ( x , y , z ) ) j + ( ∂ ∂ x ∂ ∂ y P ( x , y , z ) Q ( x , y , z ) ) k   ( ∂ R ∂ y − ∂ Q ∂ z ) i − ( ∂ R ∂ x − ∂ P ∂ z ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k   ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k   c u r l   v ( x , y , z ) = ( ∂ R ∂ y − ∂ Q ∂ z   ∂ P ∂ z − ∂ R ∂ x   ∂ Q ∂ x − ∂ P ∂ y ) curl\,\boldsymbol{v}(x,y,z)=\nabla×\boldsymbol{v}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \frac{\partial}{\partial z} \end{pmatrix}× \begin{pmatrix} P(x,y,z)\\ Q(x,y,z)\\ R(x,y,z) \end{pmatrix}\\ ~\\ \boldsymbol{i}=\left[ \begin{array}{l} 1\\ 0\\ 0 \end{array} \right] \quad\boldsymbol{j}=\left[ \begin{array}{l} 0\\ 1\\ 0 \end{array} \right] \quad\boldsymbol{k}=\left[ \begin{array}{l} 0\\ 0\\ 1 \end{array} \right]\\ ~\\ det\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ P(x,y,z) & Q(x,y,z) & R(x,y,z) \end{pmatrix} ~\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ Q(x,y,z) & R(x,y,z) \end{pmatrix}\boldsymbol{i}- \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z}\\ P(x,y,z) & R(x,y,z) \end{pmatrix}\boldsymbol{j}+ \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ P(x,y,z) & Q(x,y,z) \end{pmatrix}\boldsymbol{k}\\ ~\\ (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\boldsymbol{i}-(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z})\boldsymbol{j}+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\boldsymbol{k}\\ ~\\ (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\boldsymbol{i}+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\boldsymbol{j}+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\boldsymbol{k}\\ ~\\ curl\,\boldsymbol{v}(x,y,z)= \begin{pmatrix} \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\\ ~\\ \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\\ ~\\ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \end{pmatrix} curlv(x,y,z)=×v  xyz × P(x,y,z)Q(x,y,z)R(x,y,z)  i= 100 j= 010 k= 001  det ixP(x,y,z)jyQ(x,y,z)kzR(x,y,z)   (yQ(x,y,z)zR(x,y,z))i(xP(x,y,z)zR(x,y,z))j+(xP(x,y,z)yQ(x,y,z))k (yRzQ)i(xRzP)j+(xQyP)k (yRzQ)i+(zPxR)j+(xQyP)k curlv(x,y,z)= yRzQ zPxR xQyP

例子:



在这里插入图片描述

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值