散度、旋度的计算
笔记来源:Khancademy/MultiVariableDerivatives/curl-grant-video
散度是描述空气从周围汇合到某一处或从某一处流散开来程度的量
旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。 这个向量提供了向量场在这一点的旋转性质
1. 二维散度的计算
二维向量场例子
假设二维平面中的每个点为每个粒子,粒子会沿着向量场的方向移动
在某坐标点附近区域中我们观察粒子通过该区域粒子的数量变化
1.1 散度等于0
某坐标点附近的粒子,进入该区域的粒子数量等于离开该区域的粒子数量,所以它的散度
=
0
=0
=0
1.2 散度大于0
二维向量场例子
坐标原点附近的粒子,由坐标原点向外发散,这个区域内的粒子减少(都发散到了这个区域外侧)所以它的散度
>
0
\gt 0
>0
1.3 散度小于0
二维向量场例子
坐标原点附近的粒子,由外侧向坐标原点收敛,这个区域内的粒子增加(都收敛到了这个区域内侧)所以它的散度
<
0
\lt 0
<0
1.4 关于计算的具体解释
以下仅仅对散度大于0的情况作了说明,其他情况类比
如果向量函数仅仅含x方向的表达式
如果向量函数仅仅含y方向的表达式
如果向量函数含x、y方向的表达式
二维散度
v
(
x
,
y
)
=
[
P
(
x
,
y
)
Q
(
x
,
y
)
]
d
i
v
v
(
x
,
y
)
=
∇
⋅
v
[
∂
∂
x
∂
∂
y
]
⋅
[
P
(
x
,
y
)
Q
(
x
,
y
)
]
d
i
v
v
(
x
,
y
)
=
∂
P
∂
x
+
∂
Q
∂
y
\boldsymbol{v}(x,y)= \left[ \begin{array}{l} P(x,y)\\ Q(x,y) \end{array} \right]\\ ~\\ div\,\boldsymbol{v}(x,y)=\nabla\cdot\boldsymbol{v}\\ ~\\ \left[ \begin{array}{l} \frac{\partial }{\partial x}\\ \frac{\partial }{\partial y} \end{array} \right] \cdot \left[ \begin{array}{l} P(x,y)\\ Q(x,y) \end{array} \right] ~\\ ~\\ div\,\boldsymbol{v}(x,y)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}
v(x,y)=[P(x,y)Q(x,y)] divv(x,y)=∇⋅v [∂x∂∂y∂]⋅[P(x,y)Q(x,y)] divv(x,y)=∂x∂P+∂y∂Q
例子:
2. 三维散度的计算
三维散度
v
(
x
,
y
,
z
)
=
[
P
(
x
,
y
)
Q
(
x
,
y
)
R
(
x
,
y
)
]
d
i
v
v
(
x
,
y
)
=
∇
⋅
v
[
∂
∂
x
∂
∂
y
∂
∂
z
]
⋅
[
P
(
x
,
y
)
Q
(
x
,
y
)
R
(
x
,
y
)
]
d
i
v
v
(
x
,
y
,
z
)
=
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
\boldsymbol{v}(x,y,z)= \left[ \begin{array}{l} P(x,y)\\ Q(x,y)\\ R(x,y) \end{array} \right]\\ ~\\ div\,\boldsymbol{v}(x,y)=\nabla\cdot\boldsymbol{v}\\ ~\\ \left[ \begin{array}{l} \frac{\partial }{\partial x}\\ \frac{\partial }{\partial y}\\ \frac{\partial }{\partial z} \end{array} \right] \cdot \left[ \begin{array}{l} P(x,y)\\ Q(x,y)\\ R(x,y) \end{array} \right] ~\\ ~\\ div\,\boldsymbol{v}(x,y,z)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
v(x,y,z)=⎣
⎡P(x,y)Q(x,y)R(x,y)⎦
⎤ divv(x,y)=∇⋅v ⎣
⎡∂x∂∂y∂∂z∂⎦
⎤⋅⎣
⎡P(x,y)Q(x,y)R(x,y)⎦
⎤ divv(x,y,z)=∂x∂P+∂y∂Q+∂z∂R
3. 二维旋度的计算
旋度为正(逆时针为正)
Q(x,y)起始为负(左边的Q)随着x的增加,Q增加(Q由指向下到0到指向上)
∂
Q
∂
x
>
0
\frac{\partial Q}{\partial x}\gt 0
∂x∂Q>0
P(x,y)起始为正(下边的P),随着y的增加,P减小(P由指向右到0到指向左)
∂
P
∂
y
<
0
\frac{\partial P}{\partial y}\lt 0
∂y∂P<0
c
u
r
l
v
(
x
,
y
)
=
∇
×
v
(
∂
∂
x
∂
∂
y
)
×
(
P
(
x
,
y
)
Q
(
x
,
y
)
)
∂
∂
x
(
Q
(
x
,
y
)
)
−
∂
∂
y
(
P
(
x
,
y
)
)
c
u
r
l
v
(
x
,
y
)
=
∂
Q
∂
x
−
∂
P
∂
y
curl\,\boldsymbol{v}(x,y)=\nabla×\boldsymbol{v}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \end{pmatrix}× \begin{pmatrix} P(x,y)\\ Q(x,y) \end{pmatrix}\\ ~\\ \frac{\partial}{\partial x}(Q(x,y))-\frac{\partial}{\partial y}(P(x,y))\\ ~\\ curl\,\boldsymbol{v}(x,y)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
curlv(x,y)=∇×v (∂x∂∂y∂)×(P(x,y)Q(x,y)) ∂x∂(Q(x,y))−∂y∂(P(x,y)) curlv(x,y)=∂x∂Q−∂y∂P
例1:
计算(3,0)点的旋度为27,旋度大于0,表示该坐标点附近逆时针旋转
例2:
计算(0,3)点的旋度为-27,旋度小于0,表示该坐标点附近顺时针旋转
4. 三维旋度的计算
三维向量场的例子
用空间某点的球表示该点附近的旋转情况
向量方向表示旋转方向,向量大小表示旋转速度大小(角速度)
三维旋度计算
c u r l v ( x , y , z ) = ∇ × v ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) × ( P ( x , y , z ) Q ( x , y , z ) R ( x , y , z ) ) i = [ 1 0 0 ] j = [ 0 1 0 ] k = [ 0 0 1 ] d e t ( i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P ( x , y , z ) Q ( x , y , z ) R ( x , y , z ) ) ( ∂ ∂ y ∂ ∂ z Q ( x , y , z ) R ( x , y , z ) ) i − ( ∂ ∂ x ∂ ∂ z P ( x , y , z ) R ( x , y , z ) ) j + ( ∂ ∂ x ∂ ∂ y P ( x , y , z ) Q ( x , y , z ) ) k ( ∂ R ∂ y − ∂ Q ∂ z ) i − ( ∂ R ∂ x − ∂ P ∂ z ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k c u r l v ( x , y , z ) = ( ∂ R ∂ y − ∂ Q ∂ z ∂ P ∂ z − ∂ R ∂ x ∂ Q ∂ x − ∂ P ∂ y ) curl\,\boldsymbol{v}(x,y,z)=\nabla×\boldsymbol{v}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \frac{\partial}{\partial z} \end{pmatrix}× \begin{pmatrix} P(x,y,z)\\ Q(x,y,z)\\ R(x,y,z) \end{pmatrix}\\ ~\\ \boldsymbol{i}=\left[ \begin{array}{l} 1\\ 0\\ 0 \end{array} \right] \quad\boldsymbol{j}=\left[ \begin{array}{l} 0\\ 1\\ 0 \end{array} \right] \quad\boldsymbol{k}=\left[ \begin{array}{l} 0\\ 0\\ 1 \end{array} \right]\\ ~\\ det\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ P(x,y,z) & Q(x,y,z) & R(x,y,z) \end{pmatrix} ~\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ Q(x,y,z) & R(x,y,z) \end{pmatrix}\boldsymbol{i}- \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z}\\ P(x,y,z) & R(x,y,z) \end{pmatrix}\boldsymbol{j}+ \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ P(x,y,z) & Q(x,y,z) \end{pmatrix}\boldsymbol{k}\\ ~\\ (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\boldsymbol{i}-(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z})\boldsymbol{j}+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\boldsymbol{k}\\ ~\\ (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\boldsymbol{i}+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\boldsymbol{j}+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\boldsymbol{k}\\ ~\\ curl\,\boldsymbol{v}(x,y,z)= \begin{pmatrix} \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\\ ~\\ \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\\ ~\\ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \end{pmatrix} curlv(x,y,z)=∇×v ⎝ ⎛∂x∂∂y∂∂z∂⎠ ⎞×⎝ ⎛P(x,y,z)Q(x,y,z)R(x,y,z)⎠ ⎞ i=⎣ ⎡100⎦ ⎤j=⎣ ⎡010⎦ ⎤k=⎣ ⎡001⎦ ⎤ det⎝ ⎛i∂x∂P(x,y,z)j∂y∂Q(x,y,z)k∂z∂R(x,y,z)⎠ ⎞ (∂y∂Q(x,y,z)∂z∂R(x,y,z))i−(∂x∂P(x,y,z)∂z∂R(x,y,z))j+(∂x∂P(x,y,z)∂y∂Q(x,y,z))k (∂y∂R−∂z∂Q)i−(∂x∂R−∂z∂P)j+(∂x∂Q−∂y∂P)k (∂y∂R−∂z∂Q)i+(∂z∂P−∂x∂R)j+(∂x∂Q−∂y∂P)k curlv(x,y,z)=⎝ ⎛∂y∂R−∂z∂Q ∂z∂P−∂x∂R ∂x∂Q−∂y∂P⎠ ⎞
例子: