【前置知识】散度、梯度、旋度及其衍生

在CFD理论研究中,以下的算符是不得不品的基础。下文整理在笛卡尔坐标系下,散度、梯度、旋度等一系列物理量。

目录

倒三角算符

一阶

梯度

散度

旋度

二阶

梯度的散度

​编辑

拉普拉斯算符

散度的梯度

爱因斯坦求和约定


倒三角算符

倒三角算符,称为nabla,哈密顿算子,又可称为del。 表现形式见下式

在向量微积分中用作三个不同的微分算子的一部分:梯度 (∇)、散度 (∇⋅) 和旋度(∇×)。

一阶

梯度

梯度表示表示某标量在空间某一位置沿某一方向的变化率。

在表现形式上是倒三角算符乘一个标量,得到一个新的矢量。

散度

散度表征场的有源性。

在表现形式上是倒三角算符点乘一个矢量,得到的结果是一个标量

注意区别:散度是点乘,梯度是乘,在符号上表现的很明显

旋度

旋度在表现形式上为倒三角算符叉乘一个矢量,得到的结果是一个矢量


二阶

在上述三度的基础上,可以进一步进行处理。比如散度的梯度、梯度的散度等等

其实它们的二阶形式一共有5种,下文对两个易于混淆的进行解释:

梯度的散度

一个标量通过梯度计算,结果是一个矢量,可进行散度计算,最终仍得到一个标量。

这个是最重要也是最常见的。

拉普拉斯算符

上述计算过程可引入拉普拉斯算符进行简化:

拉普拉斯算符是求梯度的散度,按理来说是只能求标量的;但有时候我们会看到它用于矢量

在Mathematical Methods for Physicists(7th Ed)中对此做出了解释:拉普拉斯算子对于标量的结果是标量。然而,有时候会有人用拉普拉斯算子求向量,此时相对于对该矢量的三个分量分别使用拉普拉斯算子。

例如N-S方程中的就有对矢量应用的例子

此外我们还能经常在N-S方程中看到矢量点乘哈密顿算子的用法,这其实也有点令人费解,所以查了一下,发现也是一种约定俗成的用法。

散度的梯度

一个矢量经过散度计算,结果是一个标量,仍可进行梯度计算,最终得到一个矢量。在物理问题中很少出现。此处写出是为了防止和拉普拉斯算子混淆。

事实上,散度的梯度如下:


爱因斯坦求和约定

所谓Einstein约定求和就是略去求和式中的求和号。在此规则中两个相同指标就表示求和,而不管指标是什么字母,有时亦称求和的指标为“哑指标”。

在同一项中,如果同一指标(如上式中的i)成对出现,就表示遍历其取值范围和。这时求和符号可以省略,在N-S方程表示中常常用到。

例如下式,i的取值范围在1~3,此时表示的是不可压缩流体的连续性方程:

### 梯度旋度与积分变换的数学规则 #### 1. 梯度的概念及其与积分的关系 梯度是一个矢量场,描述标量场的变化率和方向。对于一个标量函数 \( f(x, y, z) \),其梯度定义为: ```python grad(f) = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k ``` 通过格林定理或斯托克斯定理可知,在二维区域上,线积分可以通过梯度来表达为面积分的形式[^2]。 #### 2. 的概念及其与体积积分的关系 用于衡量矢量场在某一点处的发。对于矢量场 \( \vec{F}(x, y, z) \),其定义为: ```python div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z ``` 根据高斯定理(Gauss's Divergence Theorem),闭合曲面上的通量等于该封闭区域内的体积分[^3]: \[ \int_{S} (\vec{F} \cdot d\vec{A}) = \int_{V} (div(\vec{F}))dV \] #### 3. 旋度的概念及其与曲线积分的关系 旋度用来描述矢量场中的旋转特性。对于矢量场 \( \vec{F}(x, y, z) \),其旋度定义为: ```python curl(F) = (∂Fz/∂y - ∂Fy/∂z)i + (∂Fx/∂z - ∂Fz/∂x)j + (∂Fy/∂x - ∂Fx/∂y)k ``` 依据斯托克斯定理(Stokes' Theorem),开曲面上的环流可以用边界曲线上的线积分表示为: \[ \oint_C (\vec{F} \cdot d\vec{l}) = \int_S ((curl(\vec{F})) \cdot d\vec{A}) \][^5] #### 4. 积分变换的应用 积分变换如傅里叶变换能够将空间域内的微分方程转化为频率域下的代数方程,从而简化求解过程。例如,拉普拉斯算子在频域下表现为简单的乘法运算。 #### 5. KL与其他概念的区别 尽管KL涉及概率分布间的距离测量,但它并不属于传统意义上的梯度旋度范畴。它主要用于统计学领域,评估两分布间的信息损失情况[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值