路径无关性、保守场、势函数

1.路径无关性、保守场、势函数


关于区域D

1.1 定理1-曲线积分基本定理


证明定理1:

笔记来源于:Path independence for line integrals | Multivariable Calculus | Khan Academy



例子:

1.2 定理2-保守场是梯度场


证明定理2:

例子:

1.3 定理3-保守场的环路性质


1.4 求保守场的势

两个问题:
1.我们如何知道一个给定的向量场F是否是保守的?
2.如果F是保守的,我们如何找到一个势函数ƒ(以便 F = ∇ f \boldsymbol{F}=\nabla f F=f



回顾 F \boldsymbol{F} F 的三维旋度中:
c u r l   F ( x , y , z ) = ∇ × F   ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) × ( M ( x , y , z ) N ( x , y , z ) P ( x , y , z ) )   i = [ 1 0 0 ] j = [ 0 1 0 ] k = [ 0 0 1 ]   d e t ( i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z M ( x , y , z ) N ( x , y , z ) P ( x , y , z ) )     ( ∂ ∂ y ∂ ∂ z N ( x , y , z ) P ( x , y , z ) ) i − ( ∂ ∂ x ∂ ∂ z M ( x , y , z ) P ( x , y , z ) ) j + ( ∂ ∂ x ∂ ∂ y M ( x , y , z ) N ( x , y , z ) ) k   ( ∂ P ∂ y − ∂ N ∂ z ) i − ( ∂ P ∂ x − ∂ M ∂ z ) j + ( ∂ N ∂ x − ∂ M ∂ y ) k   ( ∂ P ∂ y − ∂ N ∂ z ) i + ( ∂ M ∂ z − ∂ P ∂ x ) j + ( ∂ N ∂ x − ∂ M ∂ y ) k   c u r l   F ( x , y , z ) = ( ∂ P ∂ y − ∂ N ∂ z   ∂ M ∂ z − ∂ P ∂ x   ∂ N ∂ x − ∂ M ∂ y ) curl\,\boldsymbol{F}(x,y,z)=\nabla×\boldsymbol{F}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \frac{\partial}{\partial z} \end{pmatrix}× \begin{pmatrix} M(x,y,z)\\ N(x,y,z)\\ P(x,y,z) \end{pmatrix}\\ ~\\ \boldsymbol{i}=\left[ \begin{array}{l} 1\\ 0\\ 0 \end{array} \right] \quad\boldsymbol{j}=\left[ \begin{array}{l} 0\\ 1\\ 0 \end{array} \right] \quad\boldsymbol{k}=\left[ \begin{array}{l} 0\\ 0\\ 1 \end{array} \right]\\ ~\\ det\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ M(x,y,z) & N(x,y,z) & P(x,y,z) \end{pmatrix} ~\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ N(x,y,z) & P(x,y,z) \end{pmatrix}\boldsymbol{i}- \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z}\\ M(x,y,z) & P(x,y,z) \end{pmatrix}\boldsymbol{j}+ \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ M(x,y,z) & N(x,y,z) \end{pmatrix}\boldsymbol{k}\\ ~\\ (\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}-(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\ ~\\ (\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}+(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\ ~\\ curl\,\boldsymbol{F}(x,y,z)= \begin{pmatrix} \frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\\ ~\\ \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\\ ~\\ \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} \end{pmatrix} curlF(x,y,z)=×F  xyz × M(x,y,z)N(x,y,z)P(x,y,z)  i= 100 j= 010 k= 001  det ixM(x,y,z)jyN(x,y,z)kzP(x,y,z)   (yN(x,y,z)zP(x,y,z))i(xM(x,y,z)zP(x,y,z))j+(xM(x,y,z)yN(x,y,z))k (yPzN)i(xPzM)j+(xNyM)k (yPzN)i+(zMxP)j+(xNyM)k curlF(x,y,z)= yPzN zMxP xNyM
当且仅当 F \boldsymbol{F} F 是保守场时,下面这个向量为0(即旋度为0)
( ∂ P ∂ y − ∂ N ∂ z ) i + ( ∂ M ∂ z − ∂ P ∂ x ) j + ( ∂ N ∂ x − ∂ M ∂ y ) k (\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}+(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\ (yPzN)i+(zMxP)j+(xNyM)k
即:
∂ P ∂ y − ∂ N ∂ z = 0   ∂ M ∂ z − ∂ P ∂ x = 0   ∂ N ∂ x − ∂ M ∂ y = 0 \frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}=0\\ ~\\ \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}=0\\ ~\\ \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0 yPzN=0 zMxP=0 xNyM=0
即:
∂ P ∂ y = ∂ N ∂ z   ∂ M ∂ z = ∂ P ∂ x   ∂ N ∂ x = ∂ M ∂ y \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}\\ ~\\ \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x}\\ ~\\ \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} yP=zN zM=xP xN=yM

例子:

例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值