1.路径无关性、保守场、势函数
关于区域D
1.1 定理1-曲线积分基本定理
证明定理1:
笔记来源于:Path independence for line integrals | Multivariable Calculus | Khan Academy
例子:
1.2 定理2-保守场是梯度场
证明定理2:
例子:
1.3 定理3-保守场的环路性质
1.4 求保守场的势
两个问题:
1.我们如何知道一个给定的向量场F是否是保守的?
2.如果F是保守的,我们如何找到一个势函数ƒ(以便
F
=
∇
f
\boldsymbol{F}=\nabla f
F=∇f)
回顾
F
\boldsymbol{F}
F 的三维旋度中:
c
u
r
l
F
(
x
,
y
,
z
)
=
∇
×
F
(
∂
∂
x
∂
∂
y
∂
∂
z
)
×
(
M
(
x
,
y
,
z
)
N
(
x
,
y
,
z
)
P
(
x
,
y
,
z
)
)
i
=
[
1
0
0
]
j
=
[
0
1
0
]
k
=
[
0
0
1
]
d
e
t
(
i
j
k
∂
∂
x
∂
∂
y
∂
∂
z
M
(
x
,
y
,
z
)
N
(
x
,
y
,
z
)
P
(
x
,
y
,
z
)
)
(
∂
∂
y
∂
∂
z
N
(
x
,
y
,
z
)
P
(
x
,
y
,
z
)
)
i
−
(
∂
∂
x
∂
∂
z
M
(
x
,
y
,
z
)
P
(
x
,
y
,
z
)
)
j
+
(
∂
∂
x
∂
∂
y
M
(
x
,
y
,
z
)
N
(
x
,
y
,
z
)
)
k
(
∂
P
∂
y
−
∂
N
∂
z
)
i
−
(
∂
P
∂
x
−
∂
M
∂
z
)
j
+
(
∂
N
∂
x
−
∂
M
∂
y
)
k
(
∂
P
∂
y
−
∂
N
∂
z
)
i
+
(
∂
M
∂
z
−
∂
P
∂
x
)
j
+
(
∂
N
∂
x
−
∂
M
∂
y
)
k
c
u
r
l
F
(
x
,
y
,
z
)
=
(
∂
P
∂
y
−
∂
N
∂
z
∂
M
∂
z
−
∂
P
∂
x
∂
N
∂
x
−
∂
M
∂
y
)
curl\,\boldsymbol{F}(x,y,z)=\nabla×\boldsymbol{F}\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \frac{\partial}{\partial z} \end{pmatrix}× \begin{pmatrix} M(x,y,z)\\ N(x,y,z)\\ P(x,y,z) \end{pmatrix}\\ ~\\ \boldsymbol{i}=\left[ \begin{array}{l} 1\\ 0\\ 0 \end{array} \right] \quad\boldsymbol{j}=\left[ \begin{array}{l} 0\\ 1\\ 0 \end{array} \right] \quad\boldsymbol{k}=\left[ \begin{array}{l} 0\\ 0\\ 1 \end{array} \right]\\ ~\\ det\begin{pmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ M(x,y,z) & N(x,y,z) & P(x,y,z) \end{pmatrix} ~\\ ~\\ \begin{pmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ N(x,y,z) & P(x,y,z) \end{pmatrix}\boldsymbol{i}- \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z}\\ M(x,y,z) & P(x,y,z) \end{pmatrix}\boldsymbol{j}+ \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ M(x,y,z) & N(x,y,z) \end{pmatrix}\boldsymbol{k}\\ ~\\ (\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}-(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\ ~\\ (\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}+(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\ ~\\ curl\,\boldsymbol{F}(x,y,z)= \begin{pmatrix} \frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\\ ~\\ \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\\ ~\\ \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} \end{pmatrix}
curlF(x,y,z)=∇×F ⎝
⎛∂x∂∂y∂∂z∂⎠
⎞×⎝
⎛M(x,y,z)N(x,y,z)P(x,y,z)⎠
⎞ i=⎣
⎡100⎦
⎤j=⎣
⎡010⎦
⎤k=⎣
⎡001⎦
⎤ det⎝
⎛i∂x∂M(x,y,z)j∂y∂N(x,y,z)k∂z∂P(x,y,z)⎠
⎞ (∂y∂N(x,y,z)∂z∂P(x,y,z))i−(∂x∂M(x,y,z)∂z∂P(x,y,z))j+(∂x∂M(x,y,z)∂y∂N(x,y,z))k (∂y∂P−∂z∂N)i−(∂x∂P−∂z∂M)j+(∂x∂N−∂y∂M)k (∂y∂P−∂z∂N)i+(∂z∂M−∂x∂P)j+(∂x∂N−∂y∂M)k curlF(x,y,z)=⎝
⎛∂y∂P−∂z∂N ∂z∂M−∂x∂P ∂x∂N−∂y∂M⎠
⎞
当且仅当
F
\boldsymbol{F}
F 是保守场时,下面这个向量为0(即旋度为0)
(
∂
P
∂
y
−
∂
N
∂
z
)
i
+
(
∂
M
∂
z
−
∂
P
∂
x
)
j
+
(
∂
N
∂
x
−
∂
M
∂
y
)
k
(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z})\boldsymbol{i}+(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x})\boldsymbol{j}+(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})\boldsymbol{k}\\
(∂y∂P−∂z∂N)i+(∂z∂M−∂x∂P)j+(∂x∂N−∂y∂M)k
即:
∂
P
∂
y
−
∂
N
∂
z
=
0
∂
M
∂
z
−
∂
P
∂
x
=
0
∂
N
∂
x
−
∂
M
∂
y
=
0
\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}=0\\ ~\\ \frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}=0\\ ~\\ \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0
∂y∂P−∂z∂N=0 ∂z∂M−∂x∂P=0 ∂x∂N−∂y∂M=0
即:
∂
P
∂
y
=
∂
N
∂
z
∂
M
∂
z
=
∂
P
∂
x
∂
N
∂
x
=
∂
M
∂
y
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}\\ ~\\ \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x}\\ ~\\ \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
∂y∂P=∂z∂N ∂z∂M=∂x∂P ∂x∂N=∂y∂M
例子:
例子: