再探格林公式、斯托克斯公式、高斯公式

1.再探格林公式、斯托克斯公式、高斯公式

1.1 格林公式(环量与旋度的联系)

推荐文章:kaysen学长:格林公式史上最通俗最透彻讲解

笔记来源:【简明微积分】第七章P4 格林公式、高斯公式、斯托克斯公式

笔记来源:重积分、曲线积分、曲面积分【合集】【小元老师】高等数学,考研数学,高数基础

解释一:

解释二:
中间所有圈圈的旋转程度决定了边缘的旋转程度

封闭曲线的曲线积分(环流量)= 旋度的二重积分(区域内每一点旋度叠加)

1.2 斯托克斯公式(对格林公式的推广)

格林公式为二维情况、斯托克斯公式为三维情况
斯托克斯公式中的曲面相当于把格林公式中的平面拉起来,但效果依旧一样,中间抵消等效于只有边界

曲面边界的积分=曲面的环量

笔记来源:【简明微积分】第七章P4 格林公式、高斯公式、斯托克斯公式

笔记来源:高斯公式,通量,散度【小元老师】


Q(x,y,z)为向量A沿y正方向的分量,如果该分量要旋转,只能旋转到x和z方向,所以Q要对x和z求偏导


斯托克斯公式的旋度形式

1.3 高斯公式(通量与散度的联系)

笔记来源:高斯公式,通量,散度【小元老师】

解释:向量场中的向量通过曲面的流量(向量个数)与曲面本身无关,只与曲面内部包含的源的强度有关,源的强度变大则流量变大

散度所表达的意思就是:对一个无限小的微团,内部通过微团的边界向外界释放、流出的流量大小 --摘自:如何理解高斯公式?

笔记来源:【简明微积分】第七章P4 格林公式、高斯公式、斯托克斯公式

曲面通量 = 曲面内部所有源的散度

高斯公式的散度形式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值