克鲁斯卡尔kruskal算法(Java)

本文深入介绍了克鲁斯卡尔算法,一种用于寻找加权连通图最小生成树的算法。讲解了算法的基本思想、操作步骤,并通过一个具体的图例展示了如何避免形成回路。此外,还提供了详细的Java代码实现,帮助读者理解算法的实践应用。

第6章 克鲁斯卡尔算法

6.1 应用场景

在这里插入图片描述

6.2 算法介绍

1)克鲁斯卡尔(kruskal)算法,是用来求加权连通图的最小生成树的算法

2)基本思想:按照权值从小到大的顺序选择n-1条边(假设最小生成树有n个顶点,则有n-1条边),并保证这n-1条边不构成回路

3)具体做法:首先构造一个只含n个顶点的森林,然后依照权值从小到大从连通网中选取边加入到森林中,使得森林中不产生回路,直到森林变成一颗树为止(最小生成树)

6.3 图解算法

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

注意第四步虽然<C,F>是剩下未被选取的边中权值最小的,但是不选取<C,F>边是因为会导致回路
在这里插入图片描述步骤
在这里插入图片描述克鲁斯卡尔算法分析
在这里插入图片描述

如何判断是否构成回路–举例说明
在这里插入图片描述

在这里插入图片描述

6.4代码实现

在这里插入图片描述

package com.ldm.kruskal;

import java.util.Arrays;

public class KruskalCase {
   
   

	private int edgeNum; //边的个数
	private char[] vertexs; //顶点数组
	private int[][] matrix; //邻接矩阵
	//使用 INF 表示两个顶点不能连通
	private static final int INF = Integer.MAX_VALUE;

	public static void main(String[] args) {
   
   
		//创建顶点数组
		char[] vertexs = {
   
   'A', 'B', 'C', 'D', 'E', 'F', 'G'};
		//图的邻接矩阵(二维数组)
		int matrix[][] = {
   
   
				        /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
				/*A*/ {
   
      0,  12, INF, INF, INF,  16,  14},
				/*B*/ {
   
     12,   0,  10, INF, INF,   7, INF},
				/*C*/ {
   
    INF,  10,   0,   3,   5,   6, INF},
				/*D*/ {
   
    INF, INF,   3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梁小樽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值