第6章 克鲁斯卡尔算法
6.1 应用场景

6.2 算法介绍
1)克鲁斯卡尔(kruskal)算法,是用来求加权连通图的最小生成树的算法
2)基本思想:按照权值从小到大的顺序选择n-1条边(假设最小生成树有n个顶点,则有n-1条边),并保证这n-1条边不构成回路
3)具体做法:首先构造一个只含n个顶点的森林,然后依照权值从小到大从连通网中选取边加入到森林中,使得森林中不产生回路,直到森林变成一颗树为止(最小生成树)
6.3 图解算法




注意第四步虽然<C,F>是剩下未被选取的边中权值最小的,但是不选取<C,F>边是因为会导致回路
步骤
克鲁斯卡尔算法分析

如何判断是否构成回路–举例说明


6.4代码实现

package com.ldm.kruskal;
import java.util.Arrays;
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
//创建顶点数组
char[] vertexs = {
'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//图的邻接矩阵(二维数组)
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ {
0, 12, INF, INF, INF, 16, 14},
/*B*/ {
12, 0, 10, INF, INF, 7, INF},
/*C*/ {
INF, 10, 0, 3, 5, 6, INF},
/*D*/ {
INF, INF, 3

本文深入介绍了克鲁斯卡尔算法,一种用于寻找加权连通图最小生成树的算法。讲解了算法的基本思想、操作步骤,并通过一个具体的图例展示了如何避免形成回路。此外,还提供了详细的Java代码实现,帮助读者理解算法的实践应用。
最低0.47元/天 解锁文章
794

被折叠的 条评论
为什么被折叠?



