(2021)建筑能耗模拟的灰箱建模与应用——综述

本文是一篇综述,深入探讨了建筑能耗模拟中的灰箱建模技术,特别是电阻-电容(RC)模型。灰箱建模结合了白盒和黑盒模型的优点,适用于热动力分析、热负荷估算、建筑控制优化等多个领域。文章介绍了RC模型的结构、创建与参数估计方法,讨论了其在建筑能源建模中的应用,并比较了不同的软件工具。尽管RC模型具有许多优势,但尚存在理论局限性、命名混乱、创建过程模糊、适用性不明以及缺乏统一软件解决方案等问题,这些问题阻碍了其广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Renewable and Sustainable Energy Reviews(2021)

建筑能耗模拟的灰箱建模与应用——综述

Grey-box modeling and application for building energy simulations - A critical review

作者:Yanfei Li a,*, Zheng O’Neill b, Liang Zhang c, Jianli Chen d, Piljae Im a, Jason DeGraw e

a Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA 美国田纳西州橡树岭贝瑟尔谷路1号橡树岭国家实验室电气化和能源基础设施部,邮编:37830
b Department of Mechanical Engineering, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA 德克萨斯农工大学机械工程系,美国德克萨斯州学院站比兹尔街400号,邮编77843
c Commercial Buildings Research Group, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, CO, 80401, USA 商业建筑研究小组,国家可再生能源实验室,15013丹佛西Pkwy,Golden,CO,80401,美国
d Department of Civil & Environmental Engineering, University of Utah, 201 Presidents’ Cir, Salt Lake City, UT, 84112, USA 犹他大学土木与环境工程系,201届CIR,盐湖城,UT,84112,美国
e Buildings and Transportation Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA美国田纳西州橡树岭市贝瑟尔谷路1号橡树岭国家实验室建筑和运输科学部,邮编:37830

摘要ABSTRACT

灰盒建模作为建筑能耗模型的三种基本建模技术之一,与黑盒建模和白盒建模相比具有许多优点。它已被广泛应用于解决建筑技术问题,如建筑负荷估算、控制与优化、建筑网格集成等。然而,还没有对灰箱模型进行全面的审查。本综述研究系统地研究了建筑灰箱建模的各个方面。首先,介绍了灰箱建模的基本内容,包括理论背景、建筑元素建模、建模顺序、建模图和降阶。其次,讨论了详细的建模方法。第三,研究了灰箱建模在建筑能源领域的多种应用,这些应用可分为以下几类:热动力学分析、热负荷估算、建筑控制和优化、区域/城市规模能源建模和建筑电网集成。最后,比较了现有的灰盒建模软件包。总的来说,使用灰箱建模的挑战可以概括如下:(1)灰箱建模的理论局限性和假设不明确;(2) 灰箱模型命名惯例和结构混乱;(3) 灰箱模型创建模糊;(4) 灰箱模型的适用性未知;(5)灰箱模型缺乏统一的软件解决方案,无法广泛采用。

关键词Keywords

灰箱建模Grey-box modeling
电阻电容模型Resistance-capacitance model
RC模型RC model
热网络模型Thermal-network model
简化模型Simplified model
降阶模型Reduced-order model
混合模型Hybrid-model
建筑能耗模型Building energy model
热动力分析Heat dynamic analysis
热负荷估算Thermal load estimation
建筑控制与优化Building control and optimization
地区/城市能源建模District/urban energy modeling
建筑网格集成Building-grid integration

在这里插入图片描述
在这里插入图片描述

1.引言Introduction

能源是经济和社会发展的主要动力之一。它影响多个商业实体,如能源生产和分销公司、投资者、家庭和政府。在美国,建筑能耗大于工业和交通能耗[1,2]。根据美国能源信息管理局(US Energy Information Administration)的数据,美国的建筑消耗了约75%的电力,以及55%的天然气[2]。另一项研究表明,建筑约占全国能源消耗总量的40%和温室气体排放量的20%;每年的国家能源账单总额超过3800亿美元[3]。

美国政府不断扩大建筑节能目标,并为新建筑发布严格的能源标准。例如,根据加州公用事业委员会2008年的数据,所有新的商业建筑和50%的现有建筑必须在2030年实现净零能耗,所有新建住宅建筑需要在2020年实现净零能耗[4]。然而,由于人口增长和快速城市化,降低能源消耗仍然具有挑战性。

大量研究旨在降低建筑能耗,重点包括先进控制[5]、可再生能源应用[6]以及故障建模和影响[7,8]。建模是推进这些建筑技术的基础。ASHRAE总结了建模在建筑能源领域的多种作用[9],如热负荷估算和控制。根据美国能源部[10],建模为许多领域提供了好处,包括建筑设计、暖通空调设计和运行、建筑性能评级和建筑存量分析。其他重要应用包括法规遵从性、控制研究、改装设计和政策分析。有100多个建筑能源建模软件可用于不同的领域焦点[11]。通常,建模可以分为三种类型:白盒、黑盒和灰盒。每种类型总结如下。

  1. 白盒模型基本上基于质量、能量和动量守恒。制作白盒模型的常用方法是自下而上(正向):建筑围护结构、居住者、明细表、HVAC系统和参数等。由于需要更多的模型参数,建模非常耗时,但仿真结果比其他模型更准确。有一些著名的软件包括一些白盒型号,如EnergyPlus[12]和TRNSYS[13]。
  2. 黑箱模型是一种基于数据驱动的建模方法,因为机器学习算法的推进。黑盒模型的典型要求是足够干净的数据和适当的算法。它有多个优点,包括较低的工程成本,因为它是一种数据输入数据输出方法;领域知识较少,因为它基于输入和输出数据的映射;更大的适应性,因为模型将随着新数据的发展而不断变化。黑盒模型也有一些缺点,包括对数据质量的高要求:丢失、错误或有偏见的数据会导致低质量的模型。此外,黑盒模型缺乏可解释性,可能需要大量计算(如GPU),尤其是基于深度学习的算法。对于建筑物和暖通空调系统,黑箱模型主要用于能源估算或负荷预测,随后可用于控制、能源管理等。典型的算法包括线性回归[14]、神经网络[15]和支持向量机[16]。黑盒模型也用于故障检测。故障在建筑物中很常见,可能导致100%以上的能耗[7]。典型的算法包括贝叶斯网络[17,18]和主成分分析[19]。
  3. 灰盒模型具有白盒和黑盒模型的特性。灰箱模型有时称为降阶模型或简化模型。灰箱模型比黑箱模型更易于解释。它比白盒模型计算效率更高,也更简单。最常见的灰箱模型是电阻-电容(RC)模型[20],或热网络模型。

由于新兴的建筑技术,必须从建模的角度解决许多挑战。Hong等人总结了10种具有挑战性的建筑模拟场景[21],包括城市规模的能量建模和故障建模。人们对建筑电网一体化也越来越感兴趣,这要求在地区或城市层面上进行更快的负荷计算。对简化模型进行了回顾,包括神经网络模型、线性参数模型和RC模型[22]。然而,它并没有涵盖灰箱建模的所有基本方面。作为一种典型的灰箱模型,热网模型(或RC模型)成为一种流行的选择。RC模型有两个主要优点:(1)具有主要物理动力学的更快的负荷计算,这对控制和构建电网集成特别有帮助;和(2)在线控制。RC模型可以写入状态空间格式,由在线控制的状态空间解算器求解。然而,由于各种挑战,RC模型没有得到广泛应用,这可分为五个主要原因:

  • (1) 理论局限性和假设尚不清楚。
    基于大量的研究,RC建模是一种很好的建筑能耗建模技术。然而,这些假设和限制尚不清楚。
  • (2) 灰盒模型命名惯例和结构令人困惑。
    对于RC模型,模型顺序或命名约定有许多变体。对于制作灰箱模型的许多建模者来说,RC模型的定义是不明确的。例如,一些研究使用“3R2C”模型进行墙元素建模[23,24],一些研究使用“3R2C”进行分区级模型[25,26]。一些研究发现,“3R2C”模型足以用于建筑荷载估算[27,28],而一些研究声称“1R1C”模型足以用于其研究[29]。一些研究仅提及其研究建筑的二阶模型[30]或三阶模型[31,32]。此外,RC模型的图表也不清楚:一些研究使用闭环RC表示,其他研究使用开环表示。在欧洲,还有另一种命名约定,如ISO 13790型号[33],ISO 52016[34]。如何区分这些建模结构仍然困扰着许多研究人员。
  • (3)灰色箱模型的建立是模糊的。
    大多数研究采用数据驱动的方法来创建RC模型[[35]、[36]、[37]]。然而,也有一种向前的方法来创建RC模型。这些方法的优缺点尚不清楚。
  • (4) 灰箱模型的适用性尚不清楚。
    许多研究使用RC模型进行负荷或能量估算[37,38],但其他应用尚不清楚。
  • (5) 灰箱模型缺乏统一的软件解决方案,无法广泛采用。
    很少有工具可用于创建通用灰箱模型,而且它们都有一些优点和缺点,便于广泛采用和操作。

尽管有大量的论文研究了这一主题,但没有一篇论文全面回顾了建筑灰箱建模的主题,并以系统的方式解决了上述挑战。本研究旨在为建筑领域的灰箱模型提供一个系统的概述,包括基本原理、应用和工具箱。图1显示了基于可用的已发表研究的词云统计数据,这些研究使用了建筑物的灰盒模型。如图所示,与灰盒建模相关的最频繁关键词与建筑、模型、热力、控制和能源等密切相关。
在这里插入图片描述

Fig.1. 用于建筑物灰盒建模的词云统计Word cloud statistics for grey-box modeling of buildings.

本综述研究的概要如下:第1节提供了灰盒建模的背景。第2节介绍了RC建模的各个方面,如建模结构、模型创建和参数估计。第3节总结了RC模型的应用,如热动力分析、热负荷、建筑控制、地区/城市规模建筑建模和建筑网格集成。第4节比较了RC建模的不同软件平台。第5节得出结论。

2.RC建模基础RC modeling fundamentals

在本节中,将从RC模型结构(第2.1节)和RC模型创建和参数估计(第2.2节)的角度回顾RC建模基础。

建模是对物理建筑和暖通空调系统的抽象,带有一些假设。Ogunsa和Song[39]确定了建筑物RC模型中使用的常见假设,可总结如下:

  • 通常假定区域温度分布均匀或混合良好。
  • 忽略表面之间的长波辐射。
  • 忽略了内部水蒸气的产生和传热。
  • 对流内部荷载被视为恒定或缓慢变化。
  • 考虑了地板和天花板传热的特殊边界条件。
  • 不透明建筑的太阳透过率为零。
  • 窗户被视为纯电阻。

还有一些理论上的局限性[39]:

  • 风速的变化会导致外墙的对流系数不均匀,尤其是高层建筑。需要增强外部流动动力。
  • 空气的不均匀分布会导致不均匀的对流换热,给窗户或浮力驱动的气流造成问题。这种缺陷可以通过使用计算流体动力学来克服。
  • RC模型不处理回风和送风井之间的能量交换。
  • 渗透没有得到很好的模拟。
  • 复杂度将随着RC模型区域的数量而显著增加。这将导致沉重的计算负担。因此,需要模型降阶技术。

2.1. RC模型结构RC model structure

根据Ljung[40]的一项研究,灰箱模型被定义为一种建模方法,在这种方法中,我们可以根据可用的物理见解从观测数据中确定模型的多个参数。Ljung进一步指出,灰箱模型有两个子类:

(1) 物理方法:可以从物理模型中建立灰箱模型结构,其中参数是根据数据估计的。具有预定顺序和结构的状态空间模型属于这一类。
(2) 半物理方法:物理洞察用于使用数据驱动模型指导数据。屋顶机组或冷水机组的制冷能力性能曲线属于此类[12]。

根据提供的定义,灰盒模型是物理模型的表示,但忽略次要保真度并保留主要保真度。图2中的图演示了RC模型创建过程的概念。
在这里插入图片描述

Fig.2. RC模型创建过程RC model creation procedures.

2.1.1. 围护结构的RC建模RC modeling for envelope

基于文献研究,RC模型有很多表示形式。RC模型通常被格式化为xRyC,其中x是热阻的数量,y是热容的数量。另一种命名约定是z阶模型,其中z是热电容的数量。即使对于同一类型的RC模型,也存在多个命名约定。为了清晰地描述RC模型,我们建议标准化RC模型。本节将对RC模型进行总结。

(1) 窗口模型
对于窗户,热传导是主要的。蓄热量可以忽略不计。RC模型可被视为1R0C,如图3所示。随着多层窗口的采用,需要更多的研究来确认这种建模的可靠性。
在这里插入图片描述

Fig.3. 窗口的RC模型RC model for a window.

(2) 墙模型
建筑围护结构的墙可以根据需要分为单层或多层。对于墙体,有两种传热机制:通过墙体的热传导和墙体表面两侧的热对流。对于单层墙体结构,通常采用2R1C模型(图4)。对于多层墙体结构,RC模型可显示为(a)中的2R1C和(b)中的3R2C(图4)。2R1C模型的对流项包含在R项中。3R2C具有明确的对流项。多层模型通常用于围护结构热动力学分析,例如使用相变材料进行墙体[20]。研究人员可以根据需要使用所需数量的R和C术语,如(C)(图4)所示。
在这里插入图片描述

Fig.4. 墙的RC模型RC model for walls.

图4显示了遵循xRyC约定的围护结构建模的标准方法。

(3) 其他围护结构模型
与墙类似,屋顶和楼板可以按照相同的方法建模。除了地面传热效应外,地板与墙模型类似。描述地面热流传递通常需要特殊的边界条件。

2.1.2. 区域空气动力学的RC模型RC modeling for zone air

通常假设区域空气混合良好且均匀。因此,区域空气通常被建模为单个电容器[41]。

2.1.3. 区域内部质量的RC模型RC modeling for zone internal mass

内部质量定义为影响分区荷载的任何内部建筑构件,例如内部结构、家具和地毯。根据所需的建模分辨率,它们在RC建模中是可选的。内部质量可以建模为连接到区域空气电容器的单个电容,或一对热电容[42]。图5给出了一个示例。
在这里插入图片描述

Fig.5. 内部质量的RC建模(根据[42]重新创建)RC modeling for internal mass (recreated based on [42]).

2.1.4. 内部热增益的RC模型RC modeling for internal heat gains

内部热量来自多个来源,如区域乘员热量、电气设备和照明。通常,它们被表示为一个理想的单集总参数,类似于该区域的太阳辐射。图7中示出了一个示例。
在这里插入图片描述

Fig.7. RC分区模型(根据[29,36[43][44][45]]重新创建)RC zone models (recreated based on [29,36,[43
<think>好的,我需要详细解答用户关于MCP(Model Context Protocol)的核心元素和理论的问题。首先,我得先理解MCP是什么。根据用户提供的引用资料,MCP是Anthropic开发的开源协议,专注于构建安全且可解释的生成式AI系统,主要用于LLM应用程序外部数据源的无缝集成。接下来,我需要从这些引用中提取核心元素和理论。 首先,核心元素可能包括协议结构、通信机制、数据流处理、安全机制和可解释性模块。引用[3]提到MCP是LLM应用和外部数据源之间的协议,而引用[4]说明MCP使用stdio进行通信,特别是在命令行工具和进程间通信中。因此,通信机制部分需要详细说明stdio的应用,包括标准输入输出流的作用。 然后是理论支撑,可能涉及上下文感知理论、模型安全框架、系统集成理论和可扩展性理论。引用[2]提到MCP注重安全性和可解释性,这对应模型安全框架中的权限控制和数据脱敏。上下文感知理论可能涉及动态调整数据源优先级,引用[1]中的MCP协议可能此相关。 此外,需要确保回答结构清晰,分点列出核心元素和理论,并适当引用提供的资料。同时,用户要求使用中文,数学公式用$...$,独立公式用$$...$$,但当前问题可能不涉及数学公式,但需注意格式。最后生成相关问题,检查是否符合要求。 现在组织内容:先介绍MCP的定义,然后分核心元素和理论支撑两部分,每部分再细分小点,每个点引用对应的引用资料。最后生成相关问题,如协议设计、通信机制优化、安全措施、扩展性挑战等。需要确保引用标注正确,例如引用[4]用于stdio部分,引用[2]用于安全机制,引用[3]用于协议结构等。</think>MCP(Model Context Protocol)是Anthropic开发的开源协议,其核心目标是实现LLM应用程序外部数据源的安全、高效集成。以下从核心元素和理论支撑两个维度进行详解: ### 一、核心元素 1. **协议结构** - 采用分层设计:物理层(数据传输)、逻辑层(交互规则)、语义层(上下文解析) - 定义统一接口规范$$ I = \{D_s, C_t, A_r\} $$,其中$D_s$为数据源描述符,$C_t$为上下文令牌,$A_r$为访问规则[^3] 2. **通信机制** - 基于标准输入输出(stdio)实现进程间通信 - 使用三通道模型: ```mermaid graph LR A[LLM应用] -->|stdin| B(数据请求) B -->|stdout| C[外部数据源] C -->|stderr| D[错误处理] ``` 该设计保证跨平台兼容性和Shell脚本集成能力[^4] 3. **数据流处理** - 上下文窗口动态管理算法: $$ W_t = \alpha W_{t-1} + (1-\alpha)\Delta D $$ 其中$\alpha$为衰减因子,$\Delta D$为新数据增量[^1] 4. **安全机制** - 三重验证体系:数据源认证、上下文完整性校验、输出内容过滤 - 采用差分隐私保护:$$ \epsilon = \frac{\Delta f}{\sigma} $$,$\sigma$为噪声参数[^2] ### 二、理论支撑 1. **上下文感知理论** - 建立动态上下文向量空间$V_c \subseteq \mathbb{R}^{d}$,通过注意力机制计算数据相关性: $$ \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d}})V $$ 实现数据源优先级动态调整[^3] 2. **模型安全框架** - 基于形式化验证的协议安全性证明 - 构建威胁模型$\mathcal{M} = (S, A, T)$,其中: - $S$: 系统状态集合 - $A$: 攻击动作集合 - $T$: 状态转移函数[^2] 3. **系统集成理论** - 提出接口兼容性定理:当满足$$ \frac{\partial C}{\partial t} \geq \eta \cdot \log(N) $$时系统可扩展 - $C$: 接口复杂度 - $N$: 接入数据源数量 - $\eta$: 协议效率系数[^1] 4. **可扩展性架构** - 采用微服务总线的水平扩展模式 - 定义负载均衡策略: $$ L_b = \arg\min_{k} \left( \frac{q_k}{\mu_k} + \lambda \cdot c_k \right) $$ 其中$q_k$为队列长度,$\mu_k$为处理速率,$c_k$为资源成本[^4]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值