【算法】遗传算法GA寻优xgboost最优参数模型

需求:实现遗传算法GA寻优xgboost最优参数模型搭建

遗传算法GA

遗传算法(Genetic Algorithm)是一种通过模拟生物进化过程来解决优化问题的算法。它模拟了自然界中的遗传、变异和选择等过程,并通过不断迭代寻找最优解。

优点

  1. 并行性强
    遗传算法可以应用并行计算技术,同时对多个个体进行操作,从而加快算法的收敛速度。
  2. 适用性广
    遗传算法适用于多种优化问题,例如组合优化、约束优化、函数优化等。
  3. 可获得全局最优解
    遗传算法不仅可以找到局部最优解,还有一定的机会找到全局最优解。
  4. 无需求导
    遗传算法不需要求解问题的导数或梯度信息,适用于无法求解导数的问题。

缺点

  1. 可能陷入局部最优解
    遗传算法的搜索过程可能会陷入局部最优解,无法跳出局部最优解,从而无法找到全局最优解。
  2. 参数设置困难
    遗传算法有很多参数需要设置,如种群大小、交叉概率、变异概率等,参数的选择对算法的性能有很大影响,但通常很难确定合适的参数值。
  3. 运行时间较长
    遗传算法需要进行大量的迭代操作,寻找最优解的过程可能需要较长的时间。
  4. 不适用于高维问题
    遗传算法在处理高维优化问题时,由于搜索空间的维度较大,很难找到合适的解。

xgboost

XGBoost(eXtreme Gradient Boosting)是一种基于梯度提升树的机器学习模型,相对于传统的梯度提升树,它在速度和效果上都有所提升。

优点

  1. 高效性
    XGBoost在算法实现上进行了很多优化,使用了并行计算和缓存技术,使得训练和预测速度都非常快。

  2. 鲁棒性
    XGBoost对于缺失值和异常值有较好的鲁棒性,能够自动处理缺失值和异常值,使得模型具有更好的稳定性。

  3. 可解释性
    XGBoost能够输出特征的重要性,提供了对模型结果的解释能力,可以帮助我们理解模型的预测过程。

  4. 高准确性
    XGBoost在处理非线性的复杂问题上表现优秀,并且能够有效地处理高维数据。

  5. 支持并行化
    XGBoost支持并行化处理,可以利用多核CPU进行计算,提高训练和预测的效率。

缺点

  1. 参数调节复杂
    XGBoost有很多参数需要调节,包括树的深度、学习率、正则化参数等,参数调节比较复杂,需要进行一定的实验和调整。

  2. 过拟合风险
    XGBoost容易过拟合,特别是当数据集较小或者噪声较大时,需要进行适当的正则化来减少过拟合的风险。

  3. 对异常值敏感
    XGBoost对异常值比较敏感,异常值可能会对模型的训练和预测结果造成较大的影响,需要对异常值进行处理或者采用鲁棒性更强的模型。

模型搭建步骤

代码已经上传,数据集采用第三方数据集,接下来对搭建过程进行简单介绍在这里插入图片描述

一、安装xgboost和DEAP库

首先,需要安装xgboost和DEAP库,由于pip安装较慢,可以在命令行中输入如下指令进行快速安装,该部分可以参考添加链接描述

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple +安装包
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  xgboost
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  deap

二、导入必要的库

然后,我们可以开始编写代码。首先,导入必要的库:

import xgboost as xgb
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
import numpy as np
from deap import base, creator, tools, algorithms在这里插入代码片

三、加载数据集

接下来,加载Boston房价数据集:

boston = load_boston()
X, y = boston.data, boston.target

由于1.2.0以上版本的scikit-learn已经不再支持,可以使用1.1.1的scikit-learn,安装时候会自动卸载原版本参考添加链接描述

pip install scikit-learn==1.1.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

四、定义目标函数

然后,定义目标函数,即XGBoost模型的交叉验证误差:

def eval_xgb(individual):
	#保证[0,1]
    individual[6]=math.fabs(individual[6])
    while individual[6]>1 :
         individual[6]=individual[6]-1
    params = {
            'max_depth': math.ceil(individual[0]),#取整
            'learning_rate': math.fabs(individual[1]),#取绝对值
            'n_estimators': individual[2],
            'gamma': individual[3],
            'min_child_weight': individual[4],
            'subsample': individual[5],
            'colsample_bytree': individual[6],
            'objective': 'reg:squarederror'
        }

    cv_results = xgb.cv(params=params, dtrain=dtrain, num_boost_round=100, nfold=5, metrics='rmse', early_stopping_rounds=10, seed=0)

    return cv_results['test-rmse-mean'][len(cv_results)-1],

这里的目标函数接受一个个体(即一组参数)作为输入,并返回该个体的交叉验证误差。

五、定义遗传算法的参数和操作

然后,定义遗传算法的参数和操作:

creator.create('FitnessMin', base.Fitness, weights=(-1.0,))
creator.create('Individual', list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register('attr_max_depth', np.random.randint, 1, 10)
toolbox.register('attr_learning_rate', np.random.uniform, 0.01, 0.3)
toolbox.register('attr_n_estimators', np.random.randint, 50, 200)
toolbox.register('attr_gamma', np.random.uniform, 0, 1)
toolbox.register('attr_min_child_weight', np.random.uniform, 0.1, 10)
toolbox.register('attr_subsample', np.random.uniform, 0.5, 1)
toolbox.register('attr_colsample_bytree', np.random.uniform, 0.5, 1)
toolbox.register('individual', tools.initCycle, creator.Individual, (
    toolbox.attr_max_depth,
    toolbox.attr_learning_rate,
    toolbox.attr_n_estimators,
    toolbox.attr_gamma,
    toolbox.attr_min_child_weight,
    toolbox.attr_subsample,
    toolbox.attr_colsample_bytree), n=1)
toolbox.register('population', tools.initRepeat, list, toolbox.individual)
toolbox.register('evaluate', eval_xgb)
toolbox.register('mate', tools.cxUniform, indpb=0.1)
toolbox.register('mutate', tools.mutGaussian, mu=0, sigma=0.1, indpb=0.1)
toolbox.register('select', tools.selTournament, tournsize=3)

这里我们使用了随机数生成器来初始化每个参数,并定义了交叉和变异操作。

六、运行遗传算法

最后,运行遗传算法:

np.random.seed(0)
dtrain = xgb.DMatrix(X, label=y)

pop = toolbox.population(n=50)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register('avg', np.mean)
stats.register('min', np.min)

pop, logbook = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=10, stats=stats, halloffame=hof, verbose=True)

best_ind = hof[0]
print('Best individual:', best_ind)
print('Best RMSE:', best_ind.fitness.values[0])

这里我们使用了eaSimple函数来运行遗传算法,并设置了交叉概率和变异概率。运行完毕后,我们可以得到最优的个体和对应的RMSE误差。

  • 6
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
遗传算法(Genetic Algorithm, GA)是一种基于自然进化过程的优化算法,能够寻找到最优解或近似最优解。在支持向量机(Support Vector Machine, SVM)中,选择合适的参数是决定其性能的关键因素之一。通过使用遗传算法对SVM的参数进行寻优可以找到更好的参数组合,提高SVM的分类性能。 对于SVC的参数寻优,常用的参数包括C和gamma。其中C是惩罚因子,gamma是高斯核函数的参数。这两个参数的选择对于SVM的性能有着很大的影响。通常情况下,我们希望通过调节这些参数的值来达到最佳的分类效果。 利用遗传算法寻优这些参数的过程如下:首先,我们需要定义适应度函数,也就是将SVM的分类性能作为适应度的度量。其次,我们需要定义初始种群,也就是随机生成一些参数组合。然后,通过选择、交叉和变异等操作对种群进行迭代优化。在每一代中,根据适应度函数对种群中的个体进行评估,选择适应度较高的个体进行进化操作,通过交叉和变异等操作来产生新的个体。最后,不断迭代进行进化操作,直到满足终止条件。 通过使用遗传算法对SVC的参数进行寻优,可以得到较好的参数组合,从而提高SVC的分类性能。遗传算法能够在参数空间中搜索,通过不断进化种群来找到更优的参数组合。这种方法相对于传统的穷举搜索或随机搜索,能够减少搜索时间,提高搜索效率。 总之,遗传算法可以应用于优化SVC的参数选择,通过不断迭代优化种群,找到更优的参数组合,从而提高SVC的分类性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻傻虎虎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值