具身智能高校实训解决方案——从AI大模型+机器人到通用具身智能

一、    行业背景

在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。这些大模型具有海量的参数和强大的语言理解、知识表示能力,能够为机器人的行为决策提供更丰富的信息和更智能的指导。然而,单纯的大模型在面对复杂多变的现实物理环境时仍存在局限性,因为机器人需要准确感知周围环境的三维结构、物体属性和空间关系。

这正是 3D 视觉技术发挥重要作用的地方。3D 视觉为机器人带来了前所未有的感知能力,它能够精确地获取环境的深度信息,构建出三维空间模型。与传统的 2D 视觉相比,3D 视觉可以让机器人更准确地识别物体的形状、位置和姿态,无论是在室内环境中识别家具的布局,还是在工业场景中抓取复杂形状的工件,3D 视觉都提供了关键的感知支持。

高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台,使他们能够深入理解通用具身智能的原理和应用。这不仅有助于培养学生在人工智能和机器人领域的专业技能,还能激发他们的创新思维,为未来的科研和产业发展储备人才,满足社会对具身智能相关技术日益增长的需求。 

二、总体架构介绍

主要模块如下:

1、多模态感知层

a.包括语音识别模块、视觉感知模块、以及触觉传感模块。

b. 语音识别:通过LLM内置的语音识别工具,如Whisper或开源的AppBuilder SDK,将语音指令转化为文字,并利用自然语言处理技术进一步解析指令。

c. 视觉感知:采用3D深度相机(Orbbec Gemini 335L和Femto Bolt iToF),用于物体识别、三维定位和空间建图,为机械臂提供环境感知支持。

d.触觉传感:在机械臂末端安装力矩传感器,检测机械臂与物体接触时的力反馈,确保安全抓取并提升执行精度。

2、多模态理解与决策层

e.使用大语言模型(如Yi-Large、GPT-4V、CogVLM2)处理自然语言指令,解析指令意图并生成相应的执行任务。

f.结合视觉和语音信息,构建多模态融合模型,实现对复杂指令的精准理解,支持类似“把绿色积木放到红色方块上”这样的复杂命令。

g.多模态语义融合:将语音、视觉信息和触觉数据汇总,通过LLM分析,输出物体的位置坐标、目标坐标,并转换为机械臂的操作指令。

3、行动执行层

h.执行层包括任务规划模块、运动控制模块和机械臂操作模块。

i.任务规划模块:利用逆运动学解算模块将物体坐标转化为电机的转动角度。根据大模型生成的操作步骤进行任务分解,并发送给机械臂执行。

j.运动控制模块:依托高精度六自由度机械臂(睿尔曼 RM65-B),机械臂能够根据指令进行精确运动和抓取。控制算法支持拖动示教、碰撞即停等功能,保障操作的安全性和灵活性。

k.实时反馈与修正:借助触觉传感器和视觉实时反馈,调整机械臂的运动轨迹和抓取力度,以确保任务的高精度和稳定性。

4、学习反馈层

l.利用多模态学习框架(如深度强化学习DRL)实时优化执行路径和抓取策略,使系统在执行过程中能够自主学习和优化。

m.通过自动化的错误反馈机制,收集任务执行过程中产生的错误信息和成功经验,利用强化学习算法在仿真环境中反复训练,提升系统的决策能力和任务执行成功率。

n.将实训过程中的各项数据进行记录,提供给参与实训的本科生和研究生进行分析和复盘,以便提升学生们对学习反馈层的理解。

三、技术方案实现概览

1、语音与视觉协同处理:

语音指令通过LLM解析为动作指令,并通过视觉感知模块定位目标物体。视觉模块通过3D相机构建环境的三维模型,并实时跟踪物体位置。语音和视觉数据通过多模态大模型进行融合,以实现指令的准确传达和物体的精确定位。

2、路径规划与逆运动学求解:

通过多模态输入的坐标信息,路径规划模块利用逆运动学算法生成机械臂的关节角度路径。该过程不仅考虑目标位置,还要确保路径的碰撞避免及效率优化。

3、多传感器融合技术:

通过深度学习算法,将3D视觉数据与触觉反馈实时融合,能够显著提升机械臂的抓取和放置精度。这种方法利用视觉传感器捕获物体的颜色和纹理信息,同时通过触觉传感器获取物体表面的接触点位置和方向。在此基础上,算法能够实时修正机械臂的运动路径,优化避障和目标捕捉能力,实现精确操作。

4、强化学习的训练与优化:

在仿真环境中,我们可以通过强化学习技术对机械臂的抓取策略和路径规划算法进行预训练和优化。这种方法可以显著提高机械臂在实际操作中的精度和稳定性,同时降低失败率。通过仿真训练,我们可以模拟不同的环境和障碍物设置,让机械臂在虚拟环境中学习如何有效地避开障碍并准确抓取目标。这样,当机械臂在现实世界中执行任务时,它已经具备了一定的经验和策略,能够更加稳定和精确地完成抓取和放置操作。

日前,该“具身智能高校实训解决方案-从AI大模型+机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore,完成并通过昇腾相互兼容性技术认证。

图片

四、教学实训与科研应用场景

1、任务分解与流程执行:

如“沏茶”任务可以分解为多个子任务:取杯、取茶、注水等。每个子任务的执行路径和动作参数通过多模态大模型生成和优化。学生可以深入理解自然语言指令到实际执行动作的整个流程。

2、多模态数据的融合与处理:

学生将有机会使用语音、视觉和触觉等多模态数据进行分析和训练,深入理解多模态数据融合的优势及其在具身智能中的应用。

3、自主学习和策略优化:

通过强化学习框架的应用,学生可以研究如何利用深度学习进行策略优化,提升机械臂在动态环境中的适应能力。

4、前沿技术研究:

结合多模态大模型与机器人控制技术,为高校在机器人领域提供前沿研究的支撑。学生可在视觉-语言-动作模型、任务规划等领域探索新的研究方法,进一步推动具身智能的技术进步。

五、实训方案优势

1、真实场景模拟:

通过3D视觉和触觉传感实现环境感知和任务执行,学生可以体验从仿真到真实场景的任务转移过程,提升其实践操作能力。

2、创新性与前沿性:

系统整合了当前最前沿的大语言模型、多模态融合、深度学习和3D视觉等技术,符合当前具身智能的最新发展方向。

3、高度模块化与灵活扩展:

硬件和软件模块高度集成,可根据实际需求更换3D相机、传感器及大模型等,使平台具有高度的扩展性。

六、面向专业

本实训解决方案面向相关专业的本科、高职和研究生。主要面向的专业包括:

1.自动化类:自动化、轨道交通信号与控制、机器人工程、智能装备与系统、工业智能、智能工程与创意设计等;

2.计算机类:计算机科学与技术、软件工程、网络工程、物联网工程、智能科学与技术、空间信息与数字技术、电子与计算机工程、数据科学与大数据技术、电影制作、服务科学与工程、虚拟现实技术等;

3.电气类:电气工程及其自动化、电气工程与智能控制、电动载运工程、电机电器智能化等;

4.电子信息类:电子信息工程、通信工程、微电子科学与工程、光电信息科学与工程、信息工程、集成电路设计与集成系统、医学信息工程、电磁场与无线技术、电子信息科学与技术、应用电子技术教育、人工智能、智能测控工程和智能视觉工程等;

5.机械类:机械工程、机械设计制造及其自动化、机械电子工程、过程装备与控制工程、车辆工程、微机电系统工程、机电技术教育、智能制造工程、智能车辆工程、仿生科学与工程、新能源汽车工程、智能交互设计、工程和农林智能装备工程等;

6.交通运输类:交通运输、交通工程、轮机工程、飞行技术、交通设备与控制工程、船舶电子电气工程、轨道交通电气与控制、智慧交通和智能运输工程等;

7.航空航天类:航空航天工程、飞行器设计与工程、飞行器制造工程、飞行器动力工程、飞行器适航技术、飞行器控制与信息工程、无人驾驶航空器系统工程、智能飞行器技术、空天智能电推进技术等;

8.兵器类:武器系统与工程、武器发射工程、探测制导与控制技术、信息对抗技术和智能无人系统技术等;

9.其他专业:农业机械化及其自动化、农业电气化、农业智能装备工程、智慧建筑与建造、公安视听技术、未来机器人、交叉工程、智能医学工程、智能影像工程、大数据管理与应用、物流工程、测控技术与仪器、智能感知工程、海洋机器人、智慧海洋技术和智能海洋装备等;

七、产品清单

项目/产品

建议配置

介绍

奥比中光 Gemini 335L 双目结构光3D相机

按实训学生人数,每2人或4人配置一台

全天候视野:室内外通用设计,不惧户外强光,可应对复杂场景挑战。

精准感知:采用奥比中光最新自研先进深度引擎芯片 MX6800,独特的主动双目合成成像系统,能稳定输出高质量深度数据,准确感知物体。

多传感器集成:Depth、IR、RGB、IMU 采用统一的硬件时间戳。

高帧率:支持最高 60fps 的帧率。

防尘防水:防护等级为 IP65。

配套 SDK:助力便捷开发,多种模式可选。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TsingtaoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值