秋招干货|给面试官满分的自我介绍

本文提供了秋招面试的自我介绍技巧,包括自我介绍的目的、如何制作印象深刻的印象、如何克服怯场,以及面试中常见问题的回答要点。强调自我介绍要有明确的记忆点、逻辑性和与岗位的匹配性,同时分享了如何解名字、贴标签、说亮点、讲故事和拉关系等方法,以帮助求职者在面试中脱颖而出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕业生慢慢拿到毕业证,秋招也慢慢的接近。首先要搞清楚,群面自我介绍是为了什么?我们只有一个核心诉求:让面试官记住我,并对我感兴趣。那怎么介绍才能让面试官记住我呢?小编就把秘籍拿到这里分享给童鞋们,希望可以给你们带来帮助~

好的自我介绍,一定具备以下几个关键点:

1、有明确的、吸引人的记忆点

2、有逻辑、有层次的把你的经历娓娓道来

3、寥寥数语,说清楚你与所应聘的岗位的匹配情况

4、一个完整的且表明态度的结束语


如果想要在求职中脱颖而出,当然需要一把“武器”简历便是给你带来求职最好的武器,这里分享免费下载最新简历模板,搜索“锤子简历”,“简历设计网”,“象刀简历”,上百上千的简历模板等你来(防止丢失, 建议收藏使用),也祝你找到心仪的工作哟~


f581183067b5cd19e01a72a320f611ca.png


一、 自我介绍开始前

a. 面试候选人侧:为啥我们需要做自我介绍? 请大家思考这个问题三分钟。 如果你的答案依然跳不出文章开头的那个范围,请转到面试官角度想一想 


b. 面试官侧:为啥面试官需要我们做自我介绍? 准pm请思考面试官需求一分钟。 因为你一个应届生一张白纸,就算密密麻麻费老大劲填满了简历,那些项目经历在江湖老油条面试官眼里也是过家家。 


从哪里问起、问啥能最高效考察你与岗位的匹配度? 


这里打个比方,面试就是一个面试官对你本人各项资质做阅读理解、挖掘你的优劣势与岗位jd进行一一匹配的过程(当然最后还需要对所有候选人优先级进行排序)。 想想你们自己做阅读理解的时候,是题目都不给、全凭自我发挥写读后感省力,还是直接顺着考题的线索跟着挖省力? 毕竟让面试官现场给你的简历经历和jd做一一匹配还是挺费力的(不排除对于前几轮的校招生&实习生,很多非hr面试官可能在面试前十分钟才打开你的简历)。


所以面试官让我们做自我介绍大多时候 = “ 其实我简历都没时间仔细看/简历看了也没发现格外的亮点/简历内容太多太杂.....时间有限,不如你先总括一下你为什么适合这个岗位、你有哪些经历值得我在后面的提问里深挖吧?”


二、自我介绍怎么说,才能让HR一下子记住你?

教你5招,做出让HR印象深刻的自我介绍。


1、解名字

当求职者只有30秒时间做自我介绍时,解析自己的名字是最好的选择,你可以说明父母取名时的期望,或说明名字的典故,或说明自己名字和某些名人有相似之处,让面试官在最短时间内记住你。


2、贴标签

如果求职者有1分钟时间做自我介绍,当解释完名字之后,求职者可以给自己贴个标签。也就给自己做定位,在自己名字前面加一个定语,这个定语可以反映求职者某方面的特长,恰好又和应聘岗位描述是相匹配的,这样可以加深面试官的印象。


3、说亮点

如果你有独特的经历,那么你的自我介绍也不妨跳出大众化的介绍模式,把自己经历中一个独一无二的亮点介绍出来,这样会让面试官觉得很新鲜很有趣。举个例子,有一名求职者曾经徒步行走西藏,西藏在很多人心中都是非常神圣的地方,这种徒步穿越的经历并非普通人能有的,所以他每次自我介绍都围绕着这段经历展开,每次都能博得面试官的青睐。


4、讲故事

当求职者有3分钟时间可以做自我介绍时,在解名字和贴标签之后,一定要讲一个细节生动有趣的故事,对前面说的标签进行解析,对标签进行“画面化”阐释。


5、拉关系

求职者可以在自我介绍中将自己与应聘单位扯上关系,如果可以说得巧妙,不但不会引起HR反感,还会给他们留下特别深刻的印象。某位同学在面试中国银行的时候,他的自我介绍是围绕中国银行三个英文字幕展开的,BOC(Bank of China),分别代表Balance、Opportunity、Collaboration,然后将自己的经历融合进去,让面试官眼前一亮。


三、如何摆脱怯场

谈吐运用“3P原则”人力资源专家指出,自我介绍时的谈吐,应该记住“3P原则”:自信(Positive),个性(Personal),中肯(Pertinent)。回答要沉着,突出个性,强调自己的专业与能力,语气中肯,不要言过其实。


在自我介绍时要调适好自己的情绪,在介绍自己的基本情况时面无表情、语调生硬;在谈及优点时眉飞色舞、兴奋不已;而在谈论缺点时无精打采、萎靡不振,这些都是不成熟的表现。对于语言表达方面,建议可以找自己的朋友练习一下,也可以先对着镜子练习几遍,再去面试。


四、面试中HR经常提出的问题及回答要点

自我介绍完毕就是面试环节,面试环节需要提问什么呢?分为两部分:面试官和自己


你自己的问题

一般来说面试官最后一个问题都会问你还有啥要问我的,我们当然不能算没啥可以问的,可以问下面问题作为参考:

1、 加班情况如何 

2、 薪资组成情况,有哪些福利,假期 

3、 面试流程是怎样的,后面还有什么面试或者流程 

4、 多久能收到通知 

5、 能否提前过来实习 

6、 目前该部门招聘多少人 

7、 对于未来加入这个团队,你对我的期望是什么?


面试官常问问题

1、介绍你自己及你的家庭

本问题主要是了解你自己和你的家庭背景。只需如实回答。


2、你有什么优点

充分介绍你的优点,但最好少用形容词,而用能够反映你的优点的事实说话。中国人讲究谦虚,面对国有企业或三资企业的中方面试者,切不可给人狂妄的感觉。


3、你有神马缺点

介绍缺点时最好从善意的角度介绍。因为有的优点换个角度就是缺点,有的缺点换个角度也是优点,可以从大学生普遍存在的弱点方面介绍自己的缺点。当然,如果有不可隐瞒的缺陷,不应该回避。比如曾经受过处分,应如实介绍,当然可以多谈一些现在的认识和后来改正的情况。 总之,介绍优点,不可狂妄,尽量把优点说的低调一点;介绍缺点,也不必紧张不自在,尽量表现的不好意思点。要给对方一个客观公正、勇于自我反省、能够清醒地认识自己的印象。所谓人贵有自知之明。


4、你是否有出国、考研究生等打算

对这一问题,不同的单位有不同的态度,不可一概而论。你也可以询问单位对这一问题的态度。


5、你现在就读什么专业

如果读该专业不是出于自愿,可以说明当时的情况。如果你出于自愿,说明自己为什么对相关知识感兴趣。不管是否出于自愿,最好都能强调该专业知识对自己日后的发展有什么帮助。如果该专业与你应聘的单位有关,千万不要回答你不感兴趣。


6、评价一下你的大学生活

强调你的学习、工作、生活态度及你取得的成绩,以及大学生活对你一生的影响。也可以简要提一些努力不够的地方。 很多学生在学习期间做过老师的助手,介绍一下课题的意义及你具体做过的事,是很重要的。如果面试者是非本专业人员,不要用太多的专业术语。如果是本专业人员,只需提一提,避免把对方当傻瓜,也免得你实力不足闹笑话。 

 
7、在校期间曾担任过什么职务、组织或参加过什么活动

介绍一下你的实习、社会调查、学生科技活动、勤工俭学等方面的活动情况以及取得的成绩。最好还能介绍你在这些活动中取得的实际工作经验对你今后工作的重要性,它还能说明你是一个善于学习的人。 


最后祝愿小伙伴们都能找到心仪的工作岗位,关注 @锤子简历 ,并在评论区留言,抽1位随机送一套简历模板~

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值