机器学习 第四章 朴素贝叶斯

前言

朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。
该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。

朴素贝叶斯理论

朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。

1、贝叶斯决策理论

假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:

我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

  • 如果p1(x,y)>p2(x,y),那么类别为1
  • 如果p1(x,y)<p2(x,y),那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。

2、条件概率

在学习计算p1 和p2概率之前,我们需要了解什么是条件概率(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A\mid B)=\frac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)

因此, P ( A ∩ B ) = P ( A ∣ B ) P ( B ) P(A\cap B)=P(A\mid B)P(B) P(AB)=P(AB)P(B)

同理可得, P ( A ∩ B ) = P ( B ∣ A ) P ( A ) P(A\cap B)=P(B\mid A)P(A) P(AB)=P(BA)P(A)

所以, P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A\mid B)P(B)=P(B\mid A)P(A) P(AB)P(B)=P(BA)P(A)

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A\mid B)=\frac{P(B\mid A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

这就是条件概率的计算公式。

3、全概率公式

除了条件概率以外,在计算p1和p2的时候,还要用到全概率公式,因此,这里继续推导全概率公式。

假定样本空间S,是两个事件A与A’的和。

上图中,红色部分是事件A,绿色部分是事件A’,它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

P ( B ) = P ( B ∩ A ) + P ( B ∩ A ′ ) P(B)=P(B\cap A)+P(B\cap A') P(B)=P(BA)+P(BA)

在上一节的推导当中,我们已知 P ( B ∩ A ) = P ( B ∣ A ) P ( A ) P(B\cap A)=P(B\mid A)P(A) P(BA)=P(BA)P(A)

所以, P ( B ) = P ( B ∣ A ) P ( A ) + P ( B ∣ A ′ ) P ( A ′ ) P(B)=P(B\mid A)P(A)+P(B\mid A')P(A') P(B)=P(BA)P(A)+P(BA)P(A)

这就是全概率公式。它的含义是,如果A和A’构成样本空间的一个划分,那么事件B的概率,就等于A和A’的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ∣ A ) P ( A ) + P ( B ∣ A ′ ) P ( A ′ ) P(A\mid B)=\frac{P(B\mid A)P(A)}{P(B\mid A)P(A)+P(B\mid A')P(A')} P(AB)=P(BA)P(A)+P(BA)P(A)P(BA)P(A)

4、贝叶斯推断

对条件概率公式进行变形,可以得到如下形式:

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A\mid B)=P(A)\frac{P(B\mid A)}{P(B)} P(AB)=P(A)P(B)P(BA)

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

后验概率 = 先验概率 x 调整因子

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

5、朴素贝叶斯推断

理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:

由于每个特征都是独立的,我们可以进一步拆分公式 :

这样我们就可以进行计算了。

举个例子帮助理解:
某个医院早上来了六个门诊的病人,他们的情况如下表所示:

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A\mid B)=\frac{P(B\mid A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

可得:

根据朴素贝叶斯条件独立性的假设可知,"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了:

这里可以计算:

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

实验之言论过滤器

以在线社区留言为例。为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标志为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类型:侮辱类和非侮辱类,使用1和0分别表示。

我们把文本看成单词向量或者词条向量,也就是说将句子转换为向量。考虑出现所有文档中的单词,再决定将哪些单词纳入词汇表或者说所要的词汇集合,然后必须要将每一篇文档转换为词汇表上的向量。简单起见,我们先假设已经将本文切分完毕,存放到列表中,并对词汇向量进行分类标注。编写代码如下:

# -*- coding: UTF-8 -*-

"""
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
    
"""
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

if __name__ == '__main__':
    postingLIst, classVec = loadDataSet()
    for each in postingLIst:
        print(each)
    print(classVec)

从运行结果可以看出,我们已经将postingList是存放词条列表中,classVec是存放每个词条的所属类别,1代表侮辱类 ,0代表非侮辱类。

运行结果:

继续编写代码,前面我们已经说过我们要先创建一个词汇表,并将切分好的词条转换为词条向量。

# -*- coding: UTF-8 -*-

"""
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量

"""
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                    #创建一个其中所含元素都为0的向量
    for word in inputSet:                                                #遍历每个词条
        if word in vocabList:                                            #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                    #返回文档向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:               
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    print('postingList:\n',postingList)
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    print('trainMat:\n', trainMat)

从运行结果可以看出,postingList是原始的词条列表,myVocabList是词汇表。myVocabList是所有单词出现的集合,没有重复的元素。词汇表是用来干什么的?它是用来将词条向量化的,一个单词在词汇表中出现过一次,那么就在相应位置记作1,如果没有出现就在相应位置记作0。trainMat是所有的词条向量组成的列表。它里面存放的是根据myVocabList向量化的词条向量。

运行结果:

我们已经得到了词条向量。接下来,我们就可以通过词条向量训练朴素贝叶斯分类器。

# -*- coding: UTF-8 -*-
import numpy as np

"""
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量

"""
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                    #创建一个其中所含元素都为0的向量
    for word in inputSet:                                                #遍历每个词条
        if word in vocabList:                                            #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                    #返回文档向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 非侮辱类的条件概率数组
    p1Vect - 侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                            #计算训练的文档数目
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)        #文档属于侮辱类的概率
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)    #创建numpy.zeros数组,词条出现数初始化为0
    p0Denom = 0.0; p1Denom = 0.0                            #分母初始化为0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                            #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                                #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom                                      
    p0Vect = p0Num/p0Denom         
    return p0Vect,p1Vect,pAbusive                            #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)

运行结果如下,p0V存放的是每个单词属于类别0,也就是非侮辱类词汇的概率。比如p0V的倒数第7个概率,就是stupid这个单词属于非侮辱类的概率为0。同理,p1V的倒数第7个概率,就是stupid这个单词属于侮辱类的概率为0.15789474,也就是约等于15.79%的概率。我们知道stupid的中文意思是蠢货,难听点的叫法就是傻逼。显而易见,这个单词属于侮辱类。pAb是所有侮辱类的样本占所有样本的概率,从classVec中可以看出,一用有3个侮辱类,3个非侮辱类。所以侮辱类的概率是0.5。因此p0V存放的就是P(him | 非侮辱类) = 0.0833,P(is | 非侮辱类) = 0.0417,一直到P(dog | 非侮辱类) = 0.0417,这些单词的条件概率。同理,p1V存放的就是各个单词属于侮辱类的条件概率。pAb就是先验概率。

已经训练好分类器,接下来,使用分类器进行分类。

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce

"""
函数说明:创建实验样本

Parameters:
	无
Returns:
	postingList - 实验样本切分的词条
	classVec - 类别标签向量

"""
def loadDataSet():
	postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],				#切分的词条
				['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
				['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
				['stop', 'posting', 'stupid', 'worthless', 'garbage'],
				['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
				['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
	classVec = [0,1,0,1,0,1]   																#类别标签向量,1代表侮辱性词汇,0代表不是
	return postingList,classVec																#返回实验样本切分的词条和类别标签向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
	dataSet - 整理的样本数据集
Returns:
	vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
	vocabSet = set([])  					#创建一个空的不重复列表
	for document in dataSet:				
		vocabSet = vocabSet | set(document) #取并集
	return list(vocabSet)

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
	vocabList - createVocabList返回的列表
	inputSet - 切分的词条列表
Returns:
	returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
	returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
	for word in inputSet:												#遍历每个词条
		if word in vocabList:											#如果词条存在于词汇表中,则置1
			returnVec[vocabList.index(word)] = 1
		else: print("the word: %s is not in my Vocabulary!" % word)
	return returnVec													#返回文档向量

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
	trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
	trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
	p0Vect - 非侮辱类的条件概率数组
	p1Vect - 侮辱类的条件概率数组
	pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
	numTrainDocs = len(trainMatrix)							#计算训练的文档数目
	numWords = len(trainMatrix[0])							#计算每篇文档的词条数
	pAbusive = sum(trainCategory)/float(numTrainDocs)		#文档属于侮辱类的概率
	p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)	#创建numpy.zeros数组,
	p0Denom = 0.0; p1Denom = 0.0                        	#分母初始化为0.0
	for i in range(numTrainDocs):
		if trainCategory[i] == 1:							#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
			p1Num += trainMatrix[i]
			p1Denom += sum(trainMatrix[i])
		else:												#统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
			p0Num += trainMatrix[i]
			p0Denom += sum(trainMatrix[i])
	p1Vect = p1Num/p1Denom									#相除        
	p0Vect = p0Num/p0Denom          
	return p0Vect,p1Vect,pAbusive							#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

"""
函数说明:朴素贝叶斯分类器分类函数

Parameters:
	vec2Classify - 待分类的词条数组
	p0Vec - 侮辱类的条件概率数组
	p1Vec -非侮辱类的条件概率数组
	pClass1 - 文档属于侮辱类的概率
Returns:
	0 - 属于非侮辱类
	1 - 属于侮辱类

"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
	p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1    			#对应元素相乘
	p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
	print('p0:',p0)
	print('p1:',p1)
	if p1 > p0:
		return 1
	else: 
		return 0

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
	无
Returns:
	无

"""
def testingNB():
	listOPosts,listClasses = loadDataSet()									#创建实验样本
	myVocabList = createVocabList(listOPosts)								#创建词汇表
	trainMat=[]
	for postinDoc in listOPosts:
		trainMat.append(setOfWords2Vec(myVocabList, postinDoc))				#将实验样本向量化
	p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))		#训练朴素贝叶斯分类器
	testEntry = ['love', 'my', 'dalmation']									#测试样本1
	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果
	testEntry = ['stupid', 'garbage']										#测试样本2

	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果

if __name__ == '__main__':
	testingNB()

我们测试了两个词条,在使用分类器前,也需要对词条向量化,然后使用classifyNB()函数,用朴素贝叶斯公式,计算词条向量属于侮辱类和非侮辱类的概率。运行结果如下:

然而会发现,这样写的算法无法进行分类,p0和p1的计算结果都是0,显然结果错误。这是为什么呢?

利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算p(w0|1)p(w1|1)p(w2|1)。如果其中有一个概率值为0,那么最后的成绩也为0。

从上面这张图可以看出,在计算的时候已经出现了概率为0的情况。如果新实例文本,包含这种概率为0的分词,那么最终的文本属于某个类别的概率也就是0了。显然,这样是不合理的,为了降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2。

这种做法就叫做拉普拉斯平滑(Laplace Smoothing)又被称为加1平滑,是比较常用的平滑方法,它就是为了解决0概率问题。

除此之外,另外一个遇到的问题就是下溢出,这是由于太多很小的数相乘造成的。学过数学的人都知道,两个小数相乘,越乘越小,这样就造成了下溢出。在程序中,在相应小数位置进行四舍五入,计算结果可能就变成0了。为了解决这个问题,对乘积结果取自然对数。通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。下图给出函数f(x)和ln(f(x))的曲线。

检查这两条曲线,就会发现它们在相同区域内同时增加或者减少,并且在相同点上取到极值。它们的取值虽然不同,但不影响最终结果。因此我们可以对上篇文章的trainNB0(trainMatrix, trainCategory)函数进行更改,修改如下:

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 非侮辱类的条件概率数组
    p1Vect - 侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                            #计算训练的文档数目
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)        #文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords)    #创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0                            #分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                            #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                                #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)                            #取对数,防止下溢出         
    p0Vect = np.log(p0Num/p0Denom)         
    return p0Vect,p1Vect,pAbusive                            #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

运行代码,就可以得到如下结果:

这样我们得到的结果就没有问题了,不存在0概率。当然除此之外,我们还需要对代码进行修改classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)函数,修改如下:

"""
函数说明:朴素贝叶斯分类器分类函数

Parameters:
    vec2Classify - 待分类的词条数组
    p0Vec - 非侮辱类的条件概率数组
    p1Vec -侮辱类的条件概率数组
    pClass1 - 文档属于侮辱类的概率
Returns:
    0 - 属于非侮辱类
    1 - 属于侮辱类
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)        #对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

为啥这么改?因为取自然对数了。logab = loga + logb。

这样,我们的朴素贝叶斯分类器就改进完毕了。

修改后的完整代码如下:

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce

"""
函数说明:创建实验样本

Parameters:
	无
Returns:
	postingList - 实验样本切分的词条
	classVec - 类别标签向量

"""
def loadDataSet():
	postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],				#切分的词条
				['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
				['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
				['stop', 'posting', 'stupid', 'worthless', 'garbage'],
				['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
				['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
	classVec = [0,1,0,1,0,1]   																#类别标签向量,1代表侮辱性词汇,0代表不是
	return postingList,classVec																#返回实验样本切分的词条和类别标签向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
	dataSet - 整理的样本数据集
Returns:
	vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
	vocabSet = set([])  					#创建一个空的不重复列表
	for document in dataSet:				
		vocabSet = vocabSet | set(document) #取并集
	return list(vocabSet)

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
	vocabList - createVocabList返回的列表
	inputSet - 切分的词条列表
Returns:
	returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
	returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
	for word in inputSet:												#遍历每个词条
		if word in vocabList:											#如果词条存在于词汇表中,则置1
			returnVec[vocabList.index(word)] = 1
		else: print("the word: %s is not in my Vocabulary!" % word)
	return returnVec													#返回文档向量


"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 非侮辱类的条件概率数组
    p1Vect - 侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                            #计算训练的文档数目
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)        #文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords)    #创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0                            #分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                            #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                                #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)                            #取对数,防止下溢出         
    p0Vect = np.log(p0Num/p0Denom)         
    return p0Vect,p1Vect,pAbusive                            #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

"""
函数说明:朴素贝叶斯分类器分类函数

Parameters:
    vec2Classify - 待分类的词条数组
    p0Vec - 非侮辱类的条件概率数组
    p1Vec -侮辱类的条件概率数组
    pClass1 - 文档属于侮辱类的概率
Returns:
    0 - 属于非侮辱类
    1 - 属于侮辱类

"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)        #对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
	无
Returns:
	无

"""
def testingNB():
	listOPosts,listClasses = loadDataSet()									#创建实验样本
	myVocabList = createVocabList(listOPosts)								#创建词汇表
	trainMat=[]
	for postinDoc in listOPosts:
		trainMat.append(setOfWords2Vec(myVocabList, postinDoc))				#将实验样本向量化
	p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))		#训练朴素贝叶斯分类器
	testEntry = ['love', 'my', 'dalmation']									#测试样本1
	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果
	testEntry = ['stupid', 'garbage']										#测试样本2

	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果

if __name__ == '__main__':
	testingNB()

执行结果:

总结

朴素贝叶斯推断的一些优点:

  • 生成式模型,通过计算概率来进行分类,可以用来处理多分类问题。
  • 对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单。

朴素贝叶斯推断的一些缺点:

  • 对输入数据的表达形式很敏感。
  • 由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失。
  • 需要计算先验概率,分类决策存在错误率。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值