- seq等间隔函数
seq(from,to,by,length.out,along.with)
from,to 为数值,表示开始和结束
by为数值,表示间隔
length.out为数值,表示数列长度
along.with为向量,表示数列长度与该向量长度相等
- rbind矩阵的合并
rbind() 对矩阵按行合并,要求子矩阵有相同列数
如: x1<-c(1,2,3,4,5,6)
x2<-c("a","b","c","d","e","f")
dim(x1)<-c(2,3)
dim(x2)<-c(2,3)
rbind(x1,x2)
- cbind矩阵的合并
cbind() 对矩阵按列合并,要求子矩阵有相同行数
- Factor函数
作用:将一个向量转换成因子
factor(x,levels,labels=levels,exclude=NA,ordered=is.ordered(x))
x:被转换的向量
levels:因子水平,可以为空
labels:各水平的名字,可以为空
exclude:从x中剔除的水平值
ordered:因子水平是否有序,TRUE 或者FALSE
例:
data<-c(1,2,3,3,1,2,2,3,1,3,2,1) #数值向量
fdata<-factor(data)
grade<-c("优","良","差","差","优","良","良","差","优","差","良") #字符向量
fgrade<-factor(grade)
- Rep重复函数
- rep(x,times,length.out,each,正整数向量)
x为数量、向量、数据对象
times ,x重复的次数
length.out,重复后该向量的长度
each,x中每个分量重复的次数
正整数向量,x中分量对象重复的次数
- matrix矩阵的生成
matrix(data, nrow, ncol, byrow, dimnames)
data:数据向量
nrow:矩阵的行数
ncol: 矩阵的列数
byrow:逻辑值,T表示行序为主序,F表示列序为主
dimnames:行、列名称,列表格式
如:
mdat<-matrix(c(1,2,3,4,5,6,7,8,9,0),nrow=2,byrow=T,dimnames=list(c("row1","row2"),c(“C1”,”C2”,”C3”,”C4”,”C5”)))
- apply对矩阵或数组按照维度做运算
apply(x,margin,fun)
x:数组或矩阵
margin:做运算的维度,1表示行,2表示列
fun:运算函数
如:A<-matrix(1:6,nrow=2);A
sum(A);
sum(A[,2])
apply(A,1,sum)
- tapply 不同水平指定函数的计算
tapply: 接入参数INDEX,对数据分组进行运算,就和SQL中的by group一样。
- tapply(x,index,fun,simplify=TRUE)
x:计算对象,向量
index:与x长度相同,表示x的因子水平
fun:需要计算的函数
simplify:返回值类型,T表示数组,F为列表