模仿学习和强化学习的简单理解

模仿学习模仿学习(Imitation Learning)概述-CSDN博客

强化学习:​​​​​​强化学习入门这一篇就够了!!!万字长文-CSDN博客

详细概念可查看链接。

        无论是模仿学习还是强化学习,都是想让智能体,比方说机械臂学习一种策略(方法),可以完成相应的工作任务,比方说叠衣服。但两者有一些本质上的区别。

        模仿学习需要专家演示作为训练数据,以模仿学习常用的方法行为克隆为例,专家演示可以给出操作过程的状态(比方说,手部的位姿信息)和相应的动作(比方说此刻的位移,速度等),而行为克隆就是找到二者的对应关系,最终让机械臂可以做到,在一个人演示完如何叠衣服之后,机械臂也知道如何叠衣服。

        而对于强化学习,它也是要寻找状态和动作之间的对应关系,但它的状态和动作,并不像模仿学习一样是由人类演示,固定标准甚至最优的,强化学习强调从无到有的试错,模仿学习中,任何一个状态下对应的动作是固定的,而强化学习任何一个状态下在早期训练过程对应的动作都是不固定的,比方说训练模仿学习叠衣服,机器人就是要去叠衣服,整个过程心无旁骛,而强化学习,可能在这个过程,还会去探索拧螺丝,抓气球等,直到被反复敲打之后,才知道自己要做的是叠衣服。

### 使用强化学习实现机械动作模仿 #### 方法概述 为了使机械能够通过强化学习模仿特定动作,通常采用两种主要途径:一种是直接利用强化学习算法让机械探索最优策略;另一种则是先借助模仿学习获取初步的行为模式,再通过强化学习进一步优化这些行为。对于后者而言,行为克隆是一种常见的方式,其核心在于建立状态与行动之间的映射关系[^2]。 #### 实现流程 ##### 数据收集阶段 首先需采集一系列由人类或其他熟练主体执行目标任务时产生的示范样本集。每条记录应至少包含当前环境状况描述以及对应的即时响应措施。例如,在教导机械学会叠放衣物的过程中,这可能涉及捕捉手位置姿态变化及其引发的具体移动指令等细节信息。 ##### 行为克隆建模 接着运用机器学习技术构建预测模型——即所谓的“政策网络”,该网络输入端接收来自外界的感觉反馈信号(如图像、触觉),输出则指示下一步应当采取何种具体操作。此步骤旨在尽可能精确复制先前积累下来的范例表现形式,从而赋予机器人基本的任务完成能力。 ##### 强化学习调优 最后引入奖励机制评估每次尝试的效果好坏,并据此调整内部参数直至整体性能达到预期水平为止。在此期间可能会应用诸如DDPG(Deep Deterministic Policy Gradient)、HER(Hindsight Experience Replay)之类的先进算法来加速收敛进程并提高最终成果质量[^3]。 ```python import gym from stable_baselines3 import DDPG from stable_baselines3.common.envs import BitFlippingEnv from stable_baselines3.her.goal_selection_strategy import GoalSelectionStrategy from stable_baselines3.ddpg.policies import MlpPolicy, MultiInputPolicy env = gym.make('YourCustomArmEnv-v0') # 自定义的机械环境 model = DDPG(MultiInputPolicy, env) # 训练模型... model.learn(total_timesteps=1e5) ``` 上述代码片段展示了如何使用`stable-baselines3`库中的DDPG算法训练一个简单的多输入策略来进行连续控制问题的学习。实际应用场景下还需要针对具体的硬件平台定制合适的观测空间动作范围设定。 #### 工具支持 RoboSuite是一个非常适合开展此类实验的研究框架之一。它不仅提供了丰富的API接口方便开发者快速搭建起所需的物理仿真场景,而且得到了多个知名科研机构的支持与贡献,确保了长期稳定性功能完备性[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值