GAIL生成对抗模仿学习的简单理解

强化学习

强化学习需要一个合适的reward函数去求解最优行动策略,但很多情况下不容易设以一个足够全面和优秀的reward函数,特别是在一些复杂的应用场景中,例如自动驾驶中撞人、撞车和闯红绿灯三者的reward值很难有一个合理的比例和设定,当面对的周围环境更加复杂就更难去定量。

模仿学习

模仿学习希望机器能够通过观察并模仿专家的行为策略进行学习,不需要提前设计好任务的reward函数,专家的行为策略相当于引入了带标签的数据,转化为了有监督学习。

模仿学习的三种方法

行为克隆

如下图所示,专家做什么,机器跟着做,通过离散的数据学习离散的分布,专家的行为轨迹给定的数据集有限,只能通过不断增加训练集去覆盖所有可能发生的状态来保证学习的效果,但一般都不能获得足够完整的数据集,特别是有些数据集中可能存在的危险状态在实际中的采集成本非常高,比如无人驾驶在雨天的山路、热闹的市场等危险地带的数据采集。网络只是单纯的拟合训练集中的离散点

逆向强化学习

假设专家的策略是完美的,即最优reward函数下的最优解。逆向强化学习希望通过学习得到一个reward函数去解释专家的行为,在这个过程中,不断对当前得到的reward函数进行优化,最终从专家的行为中反推出一个最合理的结果。

### 生成对抗模仿学习与DDPG算法比较 #### 定义与原理 生成对抗模仿学习(Generative Adversarial Imitation Learning, GAIL)是一种基于生成对抗网络框架下的方法,用于解决强化学习中的行为克隆问题。该技术利用判别器区分专家轨迹和代理产生的轨迹,并训练生成模型来最小化两者之间的差异[^1]。 相比之下,深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)属于Actor-Critic架构的一种变体,适用于连续动作空间的任务。它结合了价值函数估计和直接策略搜索的优点,在环境中采取行动并调整参数以最大化累积奖励信号[^2]。 #### 学习机制对比 - **数据需求** - 对于GAIL而言,只需要少量高质量的人类示范样本即可启动有效学习过程;而DDPG通常依赖大量环境交互经验来进行探索。 - **稳定性考量** - 在实际应用中发现,由于引入了对抗损失项,使得GAIL能够更稳定地收敛到最优解附近;然而DDPG可能会遇到不稳定更新的问题,特别是在高维状态下容易陷入局部极值点。 - **泛化能力评估** - 当面对未见过的状态分布时,经过良好调参后的GAIL往往表现出更强的迁移性能;相反,未经特别设计增强版式的标准DDPG可能难以应对超出原始训练集范围的情况。 #### 应用场景分析 - **生成对抗模仿学习的应用** - 主要在那些获取真实世界操作员演示相对容易的情况下发挥优势,比如自动驾驶汽车、无人机飞行模式复制等领域。此外,对于一些复杂且危险系数较高的工业自动化流程也可以考虑采用此方案降低风险成本。 - **DDPG的应用实例** - 更适合处理具有明确物理规律描述以及较大规模状态转移矩阵建模难题的任务类别,例如机器人手臂抓取物体姿态优化、四足仿生机器人的步态规划等连续控制问题。 ```python import gym from stable_baselines3 import DDPG, GAIL env = gym.make('Pendulum-v0') model_ddpg = DDPG('MlpPolicy', env, verbose=1) model_gail = GAIL('MlpPolicy', env, expert_dataset=None, verbose=1) # Training models... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值