基于卷积自编码网络的缺陷检测方法

引言

由于在实际生产制造过程中,往往难以收集到大批量带有表面缺陷的产品,使得有监督学习下样本数据集的建立十分困难。因此,使用无监督学习进行缺陷检测网络训练逐渐登上主流舞台。无监督学习方法使用小批次无表面缺陷的产品建立数据集进行训练,通过差异性检测等方法使网络同样具有缺陷检测能力。目前主流的无监督训练方法包括CAE(卷积自编码网络)、GAN(生成对抗网络)等。相比于有监督学习方法,上述方法在模型压缩、数据利用等方面具备了更优秀的表现。

基于卷积自编码网络的缺陷检测方法

卷积自编码器

  卷积自编码器利用了传统编码器的方式,结合了卷积神经网络的卷积与池化操作,使编码器具备特征提取的能力,最后通过stack实现深层的神经网络 [ 1 ] ^{[1]} [1]。无监督学习可以在没有进行样本标记的情况下进行样本的特征学习,而卷积自编码器创建的意义就在于利用卷积神经网络的特性实现特征不变性提取(invariant feature)的无监督特征提取。卷积自编码器的数学原理如下:
  假设存在k个卷积核,每个卷积核由参数 w k w^k wk b k b^k bk组成,用 h k h^k hk表示卷积层,则
h k = σ ( x ∗ w k + b k ) h^k=\sigma(x*w^k+b^k) hk=σ(xwk+bk)
  将得到的 h k h^k hk进行特征重构,可以得到下式:
y = σ ( h k ∗ w ^ k + c ) y=\sigma(h^k*\hat{w}^k+c) y=σ(hkw^k+c)
  将输入的样本和最终利用特征重构得出的结果进行欧几里得距离比较,通过BP算法进行优化,就可以得到一个完整的卷积自编码器(CAE)
E = 1 2 n ∑ ( x I − y i ) 2 E=\frac{1}{2n}\sum(x_I-y_i)^2 E=2n1(xIyi)2

卷积自编码网络

  利用卷积自编码网络对产品进行表面缺陷检测的算法思想比较简单:通过使用正样本(合格产品)对卷积自动编码器进行训练,使得其具备提取物体表面特征并重构物体图像的能力。由于缺陷出的特征与正常情况下不同,因此卷积自动编码器无法对缺陷产品的表面进行重构。当对缺陷产品的重构图像以及正常图像做差时,其差异程度将远大于正常表面误差。因此,卷积自编码网络被赋予了表面缺陷检测的能力。整个训练和测试的过程见下图:
在这里插入图片描述

图 1 : 多 尺 度 卷 积 自 编 码 网 络 的 训 练 和 测 试 ( 摘 自 [ 2 ] ) 图1:多尺度卷积自编码网络的训练和测试(摘自^{[2]}) 1[2]
  图中所示为一种多尺度情况下的卷积自编码缺陷检测网络(MSCDAE),它由Mei Shuang、Wang Yudan等人所提出 [ 2 ] ^{[2]} [2]。与普通CAE方法相比,该方法中的每个样本都被下采样两次,加上原图构成三个尺度级别图像进行训练。此处以此为例。

样本处理

  由于无监督学习小样本的特点,对于样本的预处理是重要的一环,为避免光照、图片质量等因素的影响,往往需要通过图像处理手段对图片进行采样。该过程包括光照归一化、高斯金字塔下采样、噪声污染等图像处理手段。其中光照归一化的主要目的就在于消除前文所提到的光照对样本的影响。例如利用韦伯局部描述算子(WLD)来实现这一点(常见的还有HOG等算子)。
W L D ( I ) = a r c t a n ( ∑ △ x ∈ A ∑ △ y ∈ A I ( x , y ) − I ( x − △ x , y − △ y ) I ( x , y ) ) WLD(I)=arctan \Bigg(\sum_{\bigtriangleup x\in A}\sum_{\bigtriangleup y\in A}\frac{I(x,y)-I(x-\bigtriangleup x,y-\bigtriangleup y)}{I(x,y)}\Bigg) WLD(I)=arctan(xAyAI(x,y)I(x,y)I(xx,yy))
  在光照归一化后通常对得到的图像进行高斯下采样,添加噪声等。其目的都是将图片的真实特征较完整的进行保留。

总结

  相比于其他监督学习方法,利用卷积自编码网络对物体进行缺陷检测在结果上体现出了更高的鲁棒性和准确性。此外,由于算法只需要采用少量的正样本,且方法普适度高,可以在更多产品品类上得到应用,具有较好的发展前景。
  美中不足的是,由于算法的原理具有局限性,使得其在金属等无表面纹理的光滑样本上表现欠佳。目前应用较广泛的是纺织品领域,其表面纹理的规则性是算法发挥作用的主要因素。主流的金属表面缺陷检测方法需要采用级联自动编码器代替卷积自编码器 [ 3 ] ^{[3]} [3]。级联网络通过语义分割对输入图像进行转化,从而达到与普通自动编码器类似的效果。同样的,这种方法在纺织品类上的表现远低于金属品类。这一特点对卷积自编码网络的全品类普适具有明显的限制,也是将来卷积自编码网络发展的一个主要方向。

参考文献

【1】Masci J, Meier U, Cireşan D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//International Conference on Artificial Neural Networks. Springer Berlin Heidelberg, 2011: 52-59.
【2】Mei Shuang,Wang Yudan,Wen Guojun. Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model.[J]. Sensors (Basel, Switzerland),2018,18(4):
【3】Convolutional Neural Networks; New Convolutional Neural Networks Study Findings Have Been Reported from Chinese Academy of Sciences (Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks)[J]. Internet Networks & Communications,2018:
【4】S. Mei, H. Yang and Z. Yin, “An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces,” in IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1266-1277, June 2018, doi: 10.1109/TIM.2018.2795178.
【5】Zhao, Z., et al. (2018). A Surface Defect Detection Method Based on Positive Samples, Cham, Springer International Publishing.
【6】Fabric Defect Detection System Using Stacked Convolutional Denoising Auto-Encoders Trained with Synthetic Defect Data[J]. Young-Joo Han;Ha-Jin Yu. Applied Sciences. 2020(7)
【7】A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies[J]. Gaokai Liu;Ning Yang;Lei Guo;Shiping Guo;Zhi Chen. Sensors. 2020(7)
【8】Apparatus and Method of Defect Detection for Resin Films[J]. Ruey-Kai Sheu;Ya-Hsin Teng;Chien-Hao Tseng;Lun-Chi Chen. Applied Sciences. 2020(4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值