泰勒公式专题 拉格朗日余项与佩亚诺余项,麦克劳林公式

1. 泰勒公式原理
泰勒公式,也即泰勒展开式。在进行数学计算时,给定一个函数 f ( x ) f(x) f(x),如果该函数满足一定的条件(如n阶可导等),则们可以将其写成多项式的形式,以达到化繁为简,解决问题的目的。
n次多项式的通式如下所示:
P
n
=
a
0
+
a
1
x
+
a
2
x
2
+
a
3
x
3
+
.
.
.
+
a
n
x
n
P_n=a_0 + a_1x + a_2 x^2 + a_3x^3 + ... +a_nx^n
Pn=a0+a1x+a2x2+a3x3+...+anxn
仿照该通式,给定函数
f
(
x
)
f(x)
f(x),并指定点
x
0
x_{0}
x0, 关于
x
0
x_0
x0可以将已知函数
f
(
x
)
f(x)
f(x)写成多项式
P
n
P_n
Pn的形式如下式所示:
P
n
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
1
!
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
P_n(x)=f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 +
Pn(x)=f(x0)+1!f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+
f
′
′
′
(
x
0
)
3
!
(
x
−
x
0
)
3
+
.
.
.
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
\frac{f'''(x_0)}{3!}(x-x_0)^3 + ... +\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n
3!f′′′(x0)(x−x0)3+...+n!f(n)(x0)(x−x0)n
=
∑
i
=
0
n
f
(
i
)
(
x
0
)
i
!
(
x
−
x
0
)
i
=\sum_{i=0}^{n}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i
=∑i=0ni!f(i)(x0)(x−x0)i
则
f
(
x
)
=
p
n
(
x
)
+
R
n
(
x
)
f(x)=p_n(x)+R_n(x)
f(x)=pn(x)+Rn(x)
其中,参照点
x
0
x_0
x0为0的泰勒公式称为麦克劳林公式。
此外,式子中的
R
n
(
x
)
R_n(x)
Rn(x) 是使用
P
n
(
x
)
P_n(x)
Pn(x) 近似
f
(
x
)
f(x)
f(x) 的误差,该误差被称为余项。
该余项有两种表示方式,一种是拉格朗日余项,一种是佩亚诺余项。
2. 具有 拉格朗日余项 的 泰勒公式。
拉格朗日余项可以写作
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1
此时泰勒定理可以叙述为:
设
f
(
x
)
f(x)
f(x)在闭区间[a,b]有n阶连续的导数,在开区间(a,b)内有直到n+1阶导数,
x
0
∈
[
a
,
b
]
x_0∈[a,b]
x0∈[a,b],
x
∈
[
a
,
b
]
x∈[a,b]
x∈[a,b]是任意两点,则至少存在一点
ξ
\xi
ξ介于
x
x
x和
x
0
x_0
x0之间,使得
f
(
x
)
=
∑
i
=
0
n
f
(
i
)
(
x
0
)
i
!
(
x
−
x
0
)
i
+
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
f(x)=\sum_{i=0}^{n}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i +\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
f(x)=∑i=0ni!f(i)(x0)(x−x0)i+(n+1)!f(n+1)(ξ)(x−x0)n+1
成立。
由公式可见,拉格朗日余项对误差的存在持肯定态度。在含有拉格朗日余项的泰勒公式中,误差的大小与指定的公式阶数有关,该误差是不可避免的,只能尽可能地减小它。公式的阶数越高(n越大),误差就越小。反之,阶数越低,则误差越大。
这个思想,与机器学习中的梯度下降法有些相似(但不相同),当然泰勒公式在机器学习中的主要应用也是梯度迭代。在很多技术应用时,很多情况下计算达到一定的精度,即可满足我们的需求了,而不追求百分百准确。
具有拉格朗日余项的0阶泰勒公式,即拉格朗日中值公式:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
ξ
)
(
x
−
x
0
)
f(x)=f(x_0)+f'(\xi)(x-x_0)
f(x)=f(x0)+f′(ξ)(x−x0)
3. 具有 佩亚诺余项 的 泰勒公式
虽然函数经过具有拉格朗日余项的泰勒公式变化后的误差项(余项),无法消除。
但是,在佩亚诺余项将该误差写成了极限的形式。这使得我们在研究极限问题
x
→
x
0
x→x_0
x→x0时,
佩亚诺余项会以一个高阶无穷小的形式参与运算,进而得到精准的结果。
因此在运用泰勒公式求极限的时候,一定要写佩亚诺余项。
佩亚诺余项可写作:
R
n
=
o
(
(
x
−
x
0
)
n
)
R_n=o((x-x_0)^n)
Rn=o((x−x0)n)
其中,佩诺亚余项
R
n
(
x
)
是
(
x
−
x
0
)
n
R_n(x)是(x-x_0)^n
Rn(x)是(x−x0)n的高阶无穷小,即
lim
x
→
x
0
o
(
(
x
−
x
0
)
n
)
(
x
−
x
0
)
n
=
0
\lim\limits_{x \to x_0}\frac{o((x-x_0)^n)}{(x-x_0)^n}=0
x→x0lim(x−x0)no((x−x0)n)=0。
则此时泰勒定理可以叙述为:
设
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]具有n阶导数(这就意味着f(x)在
x
=
x
0
x=x_0
x=x0的某邻域内应具有
n
−
1
n-1
n−1阶导数,且
f
n
−
1
(
x
)
f^{n-1}(x)
fn−1(x)在
x
=
x
0
x=x_0
x=x0处连续),x为
x
0
x_0
x0的充分小的邻域内的一点,则有
f
(
x
)
=
∑
i
=
0
n
f
(
i
)
(
x
0
)
i
!
(
x
−
x
0
)
i
+
o
(
(
x
−
x
0
)
n
)
f(x)=\sum_{i=0}^{n}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i + o((x-x_0)^n)
f(x)=∑i=0ni!f(i)(x0)(x−x0)i+o((x−x0)n)
具有佩诺亚余项的1阶泰勒公式,也即微分与增量之间的关系式:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
o
(
(
x
−
x
0
)
)
f(x) = f(x_0) + f'(x_0)(x-x_0) +o((x-x_0))
f(x)=f(x0)+f′(x0)(x−x0)+o((x−x0))
4. 麦克劳林公式
麦克劳林公式是泰勒公式的一种特殊情况。
x
0
=
0
x_0=0
x0=0时的泰勒公式被称为麦克劳林公式。
常用的 含佩亚诺余项 的 麦克劳林公式如下:
e
x
=
∑
i
=
0
n
1
i
!
x
i
+
o
(
x
n
)
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
.
.
.
+
1
n
!
x
n
+
o
(
x
n
)
e^x=\sum_{i=0}^n\frac{1}{i!}x^i+o(x^n)=1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + ... + \frac{1}{n!}x^n +o(x^n)
ex=∑i=0ni!1xi+o(xn)=1+x+2!1x2+3!1x3+...+n!1xn+o(xn)
对
f
(
x
)
=
sin
x
f(x)=\sin x
f(x)=sinx,
x
0
=
0
x_0=0
x0=0
其麦克劳林公式第一项为0阶导数项,即未求导项,
s
i
n
(
0
)
=
0
sin(0)=0
sin(0)=0
第二项,第三项,第四项,第五项,依次为:
一阶导数项:
sin
′
x
0
=
cos
x
0
\sin 'x_0 = \cos x_0
sin′x0=cosx0, 符号为正
二阶导数项:
cos
′
x
0
=
−
s
i
n
x
0
\cos 'x_0=-sin x_0
cos′x0=−sinx0, 值为0
三阶导数项:
(
−
sin
x
0
)
′
=
−
cos
x
0
(-\sin x_0)'=- \cos x_0
(−sinx0)′=−cosx0, 符号为负
四阶导数项:
(
−
cos
x
0
)
′
=
sin
x
0
(- \cos x_0)'= \sin x_0
(−cosx0)′=sinx0, 值为0
即对
sin
x
\sin x
sinx 每求四阶导数就会循环一次,
故第一项
s
i
n
0
sin 0
sin0(未求导项),第三项(二阶导数项),第五项(四阶导数项),第七项(六阶导数项)…都为零,因此可以忽略掉。
第2,6,10,14…项符号位正,
第4,8,12,16…项符号为负。
所以
s
i
n
x
sinx
sinx的麦克劳林公式可以表示为:
sin
x
=
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
x
7
+
1
9
!
x
9
−
.
.
.
+
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
+
o
(
x
2
n
+
2
)
\sin x = x -\frac{1}{3!}x^3 +\frac{1}{5!}x^5 -\frac{1}{7}x^7 + \frac{1}{9!}x^9 - ... +\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+o(x^{2n+2})
sinx=x−3!1x3+5!1x5−71x7+9!1x9−...+(2n+1)!(−1)nx2n+1+o(x2n+2)
其中,佩亚诺余项这里表示为
o
(
x
2
n
+
2
)
o(x^{2n+2})
o(x2n+2),因为第
x
2
n
+
2
x^{2n+2}
x2n+2项为0。所以这里如果将佩诺亚余项写为
o
(
x
2
n
+
1
)
o(x^{2n+1})
o(x2n+1)也是可以的,不会影响计算的结果。至于具体写成哪一种形式,要根据计算的具体过程而定,选择更有利的写法。
下边给出四组极限计算示例,以供理解选择
o
(
x
2
n
+
1
)
o(x^{2n+1})
o(x2n+1)还是
o
(
x
2
n
+
2
)
o(x^{2n+2})
o(x2n+2):
lim
x
→
0
x
2
+
o
(
x
2
)
x
2
l
n
2
=
1
ln
2
+
0
=
1
ln
2
\lim\limits_{x \to 0}\frac{x^2 + o(x^2)}{x^2ln2}=\frac{1}{\ln 2}+0=\frac{1}{\ln 2}
x→0limx2ln2x2+o(x2)=ln21+0=ln21
lim
x
→
0
x
2
+
o
(
x
3
)
x
2
l
n
2
=
1
ln
2
+
o
(
x
3
)
x
x
3
ln
2
=
1
ln
2
+
0
⋅
0
=
1
ln
2
\lim\limits_{x \to 0}\frac{x^2 + o(x^3)}{x^2ln2}=\frac{1}{\ln 2}+\frac{o(x^3)x}{x^3\ln 2}=\frac{1}{\ln 2}+0·0=\frac{1}{\ln 2}
x→0limx2ln2x2+o(x3)=ln21+x3ln2o(x3)x=ln21+0⋅0=ln21
lim
x
→
0
x
2
+
o
(
x
2
)
x
3
l
n
2
=
0
+
0
⋅
∞
\lim\limits_{x \to 0}\frac{x^2 + o(x^2)}{x^3ln2}=0+0·\infty
x→0limx3ln2x2+o(x2)=0+0⋅∞
此时出现了
0
⋅
∞
0·\infty
0⋅∞,表明选择
o
(
x
2
)
o(x^2)
o(x2)不合适,计算无法继续进行。
lim
x
→
0
x
2
+
o
(
x
3
)
x
3
l
n
2
=
0
+
0
=
0
\lim\limits_{x \to 0}\frac{x^2 + o(x^3)}{x^3ln2}=0+0=0
x→0limx3ln2x2+o(x3)=0+0=0 选择
o
(
x
3
)
o(x^3)
o(x3)后,问题随之解决。
常用的含有佩亚诺余项的麦克劳林公式可以汇总为:
e
x
=
∑
i
=
0
n
1
i
!
x
i
+
o
(
x
n
)
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
.
.
.
+
1
n
!
x
n
+
o
(
x
n
)
e^x=\sum_{i=0}^n\frac{1}{i!}x^i+o(x^n)=1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + ... + \frac{1}{n!}x^n +o(x^n)
ex=∑i=0ni!1xi+o(xn)=1+x+2!1x2+3!1x3+...+n!1xn+o(xn)
sin
x
=
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
x
7
+
1
9
!
x
9
−
.
.
.
+
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
+
o
(
x
2
n
+
2
)
\sin x = x -\frac{1}{3!}x^3 +\frac{1}{5!}x^5 -\frac{1}{7}x^7 + \frac{1}{9!}x^9 - ... +\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+o(x^{2n+2})
sinx=x−3!1x3+5!1x5−71x7+9!1x9−...+(2n+1)!(−1)nx2n+1+o(x2n+2)
(佩亚诺余项也可以根据需求,写成
o
(
x
2
n
+
1
)
o(x^{2n+1})
o(x2n+1))
cos
x
=
x
−
1
2
!
x
2
+
1
4
!
x
4
−
1
6
x
6
+
1
8
!
x
8
−
.
.
.
+
(
−
1
)
n
−
1
(
2
n
)
!
x
2
n
+
o
(
x
2
n
+
1
)
\cos x = x -\frac{1}{2!}x^2 +\frac{1}{4!}x^4 -\frac{1}{6}x^6 + \frac{1}{8!}x^8 - ... +\frac{(-1)^{n-1}}{(2n)!}x^{2n}+o(x^{2n+1})
cosx=x−2!1x2+4!1x4−61x6+8!1x8−...+(2n)!(−1)n−1x2n+o(x2n+1)
(同理,佩亚诺余项也可以根据需求,写成
o
(
x
2
n
)
o(x^{2n})
o(x2n))
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
.
.
.
+
(
−
1
)
n
−
1
x
n
n
+
o
(
x
n
)
\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3}-...+(-1)^{n-1}\frac{x^n}{n}+o(x^n)
ln(1+x)=x−2x2+3x3−...+(−1)n−1nxn+o(xn)
(
1
+
x
)
m
=
1
+
m
x
+
m
(
m
−
1
)
2
!
x
2
+
.
.
.
+
m
(
m
−
1
)
.
.
.
(
m
−
n
+
1
)
n
!
x
n
+
o
(
x
n
)
(1+x)^m=1+mx + \frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+o(x^n)
(1+x)m=1+mx+2!m(m−1)x2+...+n!m(m−1)...(m−n+1)xn+o(xn)
1
(
1
−
x
)
=
1
+
x
+
x
2
+
x
3
+
.
.
.
+
x
n
+
o
(
x
n
)
\frac{1}{(1-x)}=1+x+x^2+x^3+...+x^n+o(x^n)
(1−x)1=1+x+x2+x3+...+xn+o(xn)
本次分享就到这里,小啾感谢您的关注与支持!
🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ