初探卷积神经网络

卷积

注:该节内容(图片及文字)均来自书本,自行整理供初学者参考

概述:在局部相关性的先验加持下,我们提出了简化的“局部连接层”,对于窗口 k 内的所有像素,采用权值相乘累加的方式提取特征信息。对于图片数据,这种权值相乘累加的运算其实是信号处理领域的一种标准运算:离散卷积运算。离散卷积运算在计算机视觉中有着广泛的应用,这里给出卷积神经网络从数学角度的阐述。

卷积:“卷”是指翻转平移操作,“积”是指积分运算。
这里定义了1D连续卷积
这里定义了1D连续卷积及其运算。
这里定义了2D离散卷积
这里定义的是2D离散卷积运算。
在这里插入图片描述
在这里插入图片描述
这里具体介绍了2D离散卷积的运算过程。

卷积神经网络

概述:卷积神经网络通过充分利用局部相关性和权值共享的思想,大大地减少了网络的参数量,从而提高训练效率,更容易实现超大规模的深度网络。

卷积神经网络层

(本节示例均以输入X为5×5的矩阵,卷积核为3×3的矩阵为例,输出记为O)

单通道输入,单卷积核

第一步运算:在这里插入图片描述
将绿框中3×3矩阵与卷积核3×3矩阵相乘(对应位置元素直接相乘),得到一个新的3×3矩阵,再将九个元素求和得7(如下图)。
在这里插入图片描述
第二步运算:
在这里插入图片描述
将绿框向右平移一格,做和第一步相同的运算,得到结果10。

以此类推
……
得到最终结果:
在这里插入图片描述
可以看出,原5×5矩阵和3×3矩阵相乘结果为一个新的3×3矩阵,简记为5×5*3×3=3×3(*表示卷积运算)。

多通道输入,单卷积核

(以3层通道为例)

第一步运算:

在这里插入图片描述
与单通道运算同理,将每一层通道单独计算,然后将每一层计算结果相加得到最终结果-5。

同理,第二步运算:
在这里插入图片描述
以此类推
……
得到最终结果:
在这里插入图片描述
同样可以看出,原三层5×5矩阵和3×3矩阵相乘结果为一个新的一层的3×3矩阵,简记为5×5×3*3×3×3=3×3×1。

下面是多通道输入,单卷积核示意图:
在这里插入图片描述

多通道输入,多卷积核

(运算过程与上面类似,不作详细说明)

运算示意图:
在这里插入图片描述

步长(strides)

步长用图形直观描述为每次“绿框”的移动格数,简写为s。
在这里插入图片描述

在之前所举例中,步长s均默认为1。本示例“绿框”移动步数为2,即步长s为2,最终运算结果为2×2矩阵。

由此可见,步长可以控制密度的提取。步长较小时,有利于提取更多的信息;步长较大时,有利于减少计算代价,过滤冗余信息。

填充(padding)

填充的数字均为0,下面是一个填充示例:(“填充”简写为p)
在这里插入图片描述
由之前例子可以看出,输出O的高和宽小于输入X的高和宽(无论步长为多少)。其实这里隐藏了一个公式:假设输入X为一个n×n矩阵,卷积核为f×f,则得到的输出O为(n-f+1)×(n-f+1)。

为了使输出O的高和宽等同于输入X的高和宽,通过填充的概念可以实现,该填充过程如图:
在这里插入图片描述
通过上下左右均填充一个单位,再依次计算,得到结果如下:
在这里插入图片描述
可以发现,输出O与输入X大小相同(均为5×5)。

这里有一个疑问:为什么上下左右各填充一个单位可以使得输入X和输出O的高和宽相等?

在填充之后,上面得到的公式变为:(n+2p-f+1)×(n+2p-f+1),令n+2p-f+1=n,就可以解出p=(f-1)/2。例如上图示例f=3,代入即得p=1。

最后,综合上述所有概念,我们可以得到一个最终的计算公式:
记输入X为一个n×n矩阵,卷积核为一个f×f矩阵,步长为s,填充单位为p,则输出O的矩阵大小为:

在这里插入图片描述

池化层

概述:在卷积层中,可以通过调节步长参数 s 实现特征图的高宽成倍缩小,从而降低了网络的参数量。实际上,除了通过设置步长,还有一种专门的网络层可以实现尺寸缩减功能,这就是池化层。

池化分为最大池化和平均池化。顾名思义,最大池化就是取最大值,平均池化就是取平均值,如图:
在这里插入图片描述

全连接层

概述:全连接层在整个卷积神经网络中起到“分类器”的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积。

感谢阅读

本文“概述”部分均摘自书本,自行整理供初学者参考。其他部分如有错误,请大家指正!谢谢大家!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值