【矢量分析】工科矢量分析注意事项与结论


公式大全

工科矢量分析公式大全

区分坐标系的坐标式与分量式

对于一个矢量 A ⃗ = ( x , y , z ) \vec{A}=(x,y,z) A =(x,y,z) ,可以写成 A ⃗ = x e 1 ⃗ + y e 2 ⃗ + z e 3 ⃗ \vec{A}=x\vec{e_1}+y\vec{e_2}+z\vec{e_3} A =xe1 +ye2 +ze3
其中 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1}, \vec{e_2}, \vec{e_3} e1 ,e2 ,e3 相互正交的单位矢量,是这个空间的矢量的一组基

对于空间直角坐标系,其坐标表达式 ( x , y , z ) (x,y,z) (x,y,z) 就是其在单位矢量上的分量式 ( A x , A y , A z ) (A_x, A_y, A_z) (Ax,Ay,Az)
其中 A x = x , A y = y , A z = z A_x=x, A_y=y, A_z=z Ax=x,Ay=y,Az=z

对于柱坐标系,其坐标表达式 ( ρ , ϕ , z ) (\rho, \phi, z) (ρ,ϕ,z) 并不是其在单位矢量上的分量式 ( A ρ , A ϕ , A z ) (A_\rho, A_\phi, A_z) (Aρ,Aϕ,Az)
不能用坐标表达式进行点乘叉乘
在这里插入图片描述
可以看到,柱坐标系的单位矢量仍然是正交的 ( ρ , ϕ , z ) ≠ ( A ρ , A ϕ , A z ) (\rho, \phi, z)\ne(A_\rho, A_\phi, A_z) (ρ,ϕ,z)=(Aρ,Aϕ,Az)

对于求坐标系,其坐标表达式 ( r , θ , ϕ ) (r, \theta, \phi) (r,θ,ϕ) 并不是其在单位矢量上的分量式 ( A r , A θ , A ϕ ) (A_r, A_\theta, A_\phi) (Ar,Aθ,Aϕ)
不能用坐标表达式进行点乘叉乘
在这里插入图片描述
可以看到,球坐标系的单位矢量仍然是正交的 ( r , θ , ϕ ) ≠ ( A r , A θ , A ϕ ) (r, \theta, \phi)\ne(A_r, A_\theta, A_\phi) (r,θ,ϕ)=(Ar,Aθ,Aϕ)

单位径矢的公式

直 角 坐 标 系 : e r ⃗ = ( x r , y r , z r )   柱 坐 标 系 : e r ⃗ = ( ρ r , 0 , z r )   球 坐 标 系 : e r ⃗ = ( 1 , 0 , 0 )   通 过 三 系 转 换 计 算 , 注 意 以 上 都 是 分 量 式 而 不 是 坐 标 直角坐标系:\vec{e_r}=(\frac x r, \frac y r, \frac z r)\\\ \\ 柱坐标系:\vec{e_r}=(\frac \rho r, 0, \frac z r)\\\ \\ 球坐标系:\vec{e_r}=(1,0,0)\\\ \\ 通过三系转换计算,注意以上都是分量式而不是坐标 er =(rx,ry,rz) er =(rρ,0,rz) er =(1,0,0) 

区分场与势的概念

势和场是两个概念,通过矢量场可以定义出场的势
当0势能面确定后,可以定义出势能场(标量场)

对保守(无旋)的矢量场,可以定义出其势能场

径矢的公式

∇ ⋅ ( a ⃗ × r ⃗ ) = 0   ∇ ⋅ ( r ⃗ × A ⃗ ( r ) ) = 0   ∇ ( 1 r ) = − r ⃗ r 3 \nabla \cdot(\vec{a} \times \vec{r})=0\\\ \\ \nabla \cdot(\vec{r} \times \vec{A}(r))=0\\\ \\ \nabla(\frac 1 { r})=-\frac{\vec{r}}{r^3} (a ×r )=0 (r ×A (r))=0 (r1)=r3r

一些屁话

无旋即保守,无散即无源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值