喜讯!安全狗入选《2024中国企业服务云图(精选版)》多个细分领域

近日,由吴中区人民政府、苏州市工信局指导,崔牛会主办,苏州太湖国家旅游度假区管委会协办的2023中国SaaS大会在苏州顺利举办。

作为国内云原生安全领导厂商,安全狗突出的多项安全能力也在大会上受到认可。

厦门服云信息科技有限公司(品牌名:安全狗)成立于2013年,致力于提供云安全、(云)数据安全领域相关产品、服务及解决方案。作为国内云工作负载安全(CWPP)产品开拓者、云主机安全SaaS产品的开创者,安全狗依托云工作负载安全、云原生安全(CNAPP)、数据安全治理等技术理念,打造了云安全、安全大数据、数据安全等多条产品线,覆盖了网络安全行业的多个前沿领域,满足不同用户的多种安全需求。

此次大会上,崔牛会联合火山引擎共同推出了《2024中国企业服务云图(精选版)》受到业界的关注。据悉,入驻精选版云图的标准是,营业收入需要达到3000万人民币/等值美金,或者行业/领域整体市场规模偏小或为新兴行业,优先收录行业/领域前TOP3。


随着我国信息化进程的快速推进,云计算和云原生技术正在影响各行各业的IT基础设施、平台和应用系统,并渗透到工业互联网、5G、车联网、边缘计算等新型基础设施中;与此同时,国家发布多项网络安全、数据安全相关政策法规,加大了对各行各业自身网络安全运营管理要求的同时,数字经济转型的快速发展也考验着千行百业用户的数据安全全生命周期防护和治理能力。在面对客观条件和自身发展需求,追求快速且安全发展的企业在做好自身的网络安全、数据安全之际,不得不高度重视云安全及(云)数据安全的防护与治理

在此次的大会上,安全狗入选精选版云图的网络安全与数据安全版块,直接体现了安全狗综合且全面的云安全、(云)数据安全产品与能力


PART1

领先的云安全能力

在云安全领域,安全狗基于云原生安全 (CNAPP)理念,结合主机自适应安全、防篡改、网络微隔离、蜜罐诱捕等最新安全技术,打造了具备云安全 SaaS 服务、云工作负载安全能力、云原生安全能力等解决方案和产品矩阵,满足公有云、私有云、混合云等复杂云环境下用户的多种安全需求。

01

云工作负载安全

安全狗推出国内首家全面符合从CWPP理念升级到覆盖CNAPP理念的一体化云工作负载安全保护解决方案。基于融合架构下的云工作负载解决思路,安全狗构建了主机安全、资产管理、漏洞补丁、东西向流量隔离、云原生安全的“N合一”解决方案,完成国产化操作系统适配,完美赋能云原生安全,能够为云工作负载提供整体的保护。

02

云原生安全

安全狗在业界首次提出云原生安全2.X理念及“一体化”全栈云原生安全方案。基于CNAPP理念,安全狗采用主机安全Agent和安全容器相结合的技术,即落地了“安全左移”,又能对云原生容器运行时安全做全面防护,解决了云原生网络安全隔离、云原生容器篡改等系列问题,有效地确保云原生容器全生命周期安全。

03

云安全资源池

安全狗以独创性的资源池思维打造了云安全资源池,可为公有云、私有云、混合云环境下的用户提供云安全等保服务、安全托管服务、云安全管理、7*24小时安全专家服务等,低成本、易部署、全托管地为用户业务安全护航。

PART2

全生命周期数据安全治理

在数据安全领域,安全狗围绕数据安全治理的全生命周期打造了数据安全产品品牌——数垒(FortData)及系列产品。依托数据安全资源池、数据安全风险评估、数据安全管控等多种能力,我们能有效保护用户敏感数据,协助用户进一步深挖数据生产要素的价值。


一直以来,安全狗围绕CWPP理念云原生安全技术大数据分析以及数据安全治理理念等打造了一系列的安全产品矩阵,形成了云安全(云)数据安全等多条成熟的产品线,并且安全狗团队们不断精进产品安全能力、积极提升用户体验。不同的核心产品线经历众多项目的实践,接受了众多行业头部用户的严格测试,在国内外权威专业技术层面,先后获得公安三所工信部GartnerCSAIDC等权威机构的认定;在用户市场口碑层面,安全狗已成功地为包括央企部委、世界500强等头部客户在内的80万余家机构提供稳定安全产品与服务,保护超过600万(云)服务器,深受广泛用户的认可

此次入选,不仅是崔牛会等权威机构对安全狗安全能力的高度认可,更是安全狗良好市场表现的见证。未来,安全狗将依托自身多年的安全技术基础,持续整合&优化自身的安全能力与水平,不断提升云安全、(云)数据安全产品与能力,实时为用户信息安全、企业数字经济转型、国家网络安全发展做贡献。

以下是一个简单的用Python实现的云模型多个云图合并的示例代码: ``` python import numpy as np # 加权平均法 def merge_clouds_weighted_average(clouds, weights): merged_cloud = np.zeros_like(clouds[0]) for i, cloud in enumerate(clouds): merged_cloud += cloud * weights[i] return merged_cloud / np.sum(weights) # 相似度比较法 def merge_clouds_similarity(clouds): similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j]) while len(clouds) > 1: i, j = np.unravel_index(np.argmax(similarities), similarities.shape) new_cloud = merge_two_clouds(clouds[i], clouds[j]) clouds.pop(max(i,j)) clouds.pop(min(i,j)) clouds.append(new_cloud) similarities = np.delete(similarities, max(i,j), axis=0) similarities = np.delete(similarities, max(i,j), axis=1) similarities = np.delete(similarities, min(i,j), axis=0) similarities = np.delete(similarities, min(i,j), axis=1) new_similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): new_similarities[i,j] = new_similarities[j,i] = compute_similarity(clouds[i], clouds[j]) similarities = np.vstack((similarities, new_similarities)) similarities = np.hstack((similarities, np.zeros((len(similarities), 1)))) similarities = np.hstack((similarities, np.zeros((len(similarities), 1)).T)) similarities[-len(clouds):, :-len(clouds)] = new_similarities return clouds[0] # 聚类分析法 def merge_clouds_clustering(clouds, k): from sklearn.cluster import AgglomerativeClustering clustering = AgglomerativeClustering(n_clusters=k, affinity='precomputed', linkage='average') similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j]) clustering.fit(similarities) merged_clouds = [] for i in range(k): indices = np.where(clustering.labels_ == i)[0] weights = np.zeros(len(indices)) for j, index in enumerate(indices): weights[j] = np.sum(similarities[index, indices]) / (len(indices) - 1) merged_clouds.append(merge_clouds_weighted_average(clouds[indices], weights)) return merged_clouds # 计算云图相似度 def compute_similarity(cloud1, cloud2): return np.sum(np.minimum(cloud1, cloud2)) # 合并两个云图 def merge_two_clouds(cloud1, cloud2): return np.maximum(cloud1, cloud2) ``` 其中,`clouds`是一个包含多个云图的列表,`weights`是各个云图的权值。`merge_clouds_weighted_average`函数实现了加权平均法,`merge_clouds_similarity`函数实现了相似度比较法,`merge_clouds_clustering`函数实现了聚类分析法。`compute_similarity`函数计算云图相似度,`merge_two_clouds`函数实现了合并两个云图的操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值