数据分析手册翻译及读后感, 英文原版资料可下载:introduction to data analysis handbook
数据分析的“问题”
“数据分析”是什么?
它指的是一种方法还是多种方法?不同程序的集合?这是一个过程吗?如果是,这意味着什么?更重要的是,没有数学或统计学背景的MSHS项目员工能否学会在工作中识别和使用数据分析?(附言——最后一个问题的答案是肯定的!——假设你们投入少量的时间、精力和实践)。
数据分析可以参考各种具体的程序和方法。然而,在程序能够有效地使用这些程序和方法之前,我们认为将数据分析视为过程的一部分是很重要的。我们的意思是,数据分析涉及目标;关系;决策;乃至想法,除了处理实际数据本身。简言之,数据分析包括利用信息(数据)支持项目或机构的工作、目标和计划的方法。从这个角度来看,我们提供了一个数据分析过程,包括以下关键组件:
•目的 Purpose
•问题 Questions
•数据收集 Data Collection
•数据分析程序和方法 Data Analysis Procedures and Methods
•解释/确定调查结果 Interpretation/Identification of Findings
•写作、报告和传播 Writing, Reporting, and Dissemination
•评价 Evaluation
从我们对文献的回顾中,我们还发现有许多不同的方法来概念化数据分析过程。我们可以从根本上区分线性方法和周期方法;在本手册中,我们提供了这两方面的示例。
数据分析之线性过程
数据分析的严格线性方法是从头到尾按顺序处理组件。这种方法的一个可能优势是它是结构化和组织化的,因为过程的步骤是按固定顺序安排的。此外,该过程的线性概念化可能使其更易于学习。一个可能的缺点是,决策的逐步性质可能会模糊或限制分析的力量——换句话说,过程的结构化性质限制了其有效性。
数据分析之周期性(循环)过程
数据分析的周期性方法为决策的性质提供了更大的灵活性,还包括更多不同类型的决策。在这种方法中,流程的不同组成部分可以在不同的时间以不同的顺序进行处理——只要最后一切都“在一起”。这种方法的一个可能优势是,项目工作人员不必按顺序“约束”每一步的工作。项目工作人员有可能“边做边学”,并在流程完成前对流程进行改进。
因此,对于“什么是数据分析”这一问题,最简单的答案可能是:
视情况而定。Rather than chose to present ‘data analysis’ as either linear or cyclical, we have decided to present both approaches.(与其选择将数据分析呈现为线性或周期性,我们选择(将线性和周期性)视为数据分析的不同方法)。希望这一选择将为MSHS项目员工提供选择和灵活性,使他们能够做出明智的决策,利用他们已有的技能,并提高和发展使用数据及其分析支持项目/机构目的和目标的能力。