网络空间安全已成为国家安全的重要组成部分,是保障信息社会和信息技术可持续发展的核心基础。信息技术的迅猛发展和深度应用必将带来更多难以解决的安全问题,只有挖掘其底层规律和限制性,才能真正解决其问题。
一、网络空间安全概述
1.1 基本概念
1)计算机安全:通常采取适当行动保护数据和资源,使它们免受偶然或恶意动作的伤害;
2)数据的完整性:数据所具有的特性,即无论数据形式做何变化,数据的准确性和一致性均保持不变;
3)保密性、机密性:数据所具有的特性,即表示数据所达到的未提供或未泄露给未授权的个人、过程或其他实体的程度;
4)可用性:数据或资源的特性,被授权实体按要求能访问和使用数据或资源;
5)风险评估:一种系统的方法,用于标识出数据处理系统的资产,对这些资产的威胁以及该系统对这些威胁的脆弱性;
6)威胁:一种潜在的计算机安全违规;
7)脆弱性:数据处理系统中的弱点或纰漏;
8)风险:特定的威胁利用数据处理系统中特定的脆弱性的可能性;
9)主体:能访问客体的主动实体;
10)客体:一种实体,对该实体的访问是受控的;
11)敏感信息:由权威机构确定的必须受保护的信息,因为该信息的泄露、修改、破坏或丢失都会对人或事产生可预知的损害;
12)密码学:一门学科,包含数据变换的原则、手段及方法,以便隐藏数据的语义内容,防止未经授权的使用或未经检测的修改;
13)加密:数据的密码变换,加密的结果是密文,相反的过程称为解密;
14)单向加密:一种加密技术,它只产生密文,而不能将密文再生为原始数据;
15)明文:不利用密码技术即可得出语义内容的数据;
16)密文:利用加密产生的数据,若不使用密码技术,则得不到其语义内容;
17)私有密钥:一种密钥,为拥有者专用于解密操作的位串,简称私钥;
18)公开密钥:一种密钥,任意实体都可用它与相对应的私钥拥有者进行加密通信,简称公钥;
19)访问控制:一种保证手段,即数据处理系统的资源只能由被授权实体按授权方式进行访问;
20)最小特权:将主体的访问权限制到最低限度,即仅执行授权任务所必需的那些权利;
21)隐蔽通道:可用来按照违反安全策略的方式传送数据的传输信道;
22)病毒:一种在用户不知情或未批准下,能自我复制或运行的程序,病毒往往会影响到受感染设备的正常运作,或是让设备被控制而不自知,进而盗窃数据或者利用设备作其他用途;
23)蠕虫:一种独立程序,它可通过数据处理系统或计算机网络传播自身;
24)特洛伊木马:一种后门程序,用来盗取目标用户的个人信息,甚至是远程控制对方的计算机进行加壳制作,然后通过各种手段传播或骗取目标用户执行该程序,以达到盗取密码等数据资料的目的;
1.2 安全体系
1)信息安全三要素:机密性、完整性、可用性;
2)PDR模型:
防护(Protection,P):采用一系列手段(识别、认证、授权、访问控制、数据加密等)保障数据的保密性、完整性、可用性、可控性以及不可否认性等;
检测(Detection,D):利用各类工具检查系统可能存在的可导致黑客攻击、病毒泛滥的脆弱性,即入侵检测、病毒检测等;
响应(Response,R):对危及安全的事件、行为、过程及时做出响应处理,杜绝危害的进一步蔓延扩大,力求将安全事件的影响降到最低;
注:实现安全,需要让防护时间>检测时间+响应时间;
3)P2DR模型:
策略(Policy,P):是模型的核心,意味着网络安全要达到的目标,决定各种措施的强度;
防护(Protection,P):安全的第一步,包括制定安全规章(以安全策略为基础执行安全细则)、配置系统安全(配置操作系统、安装补丁等)、采用安全措施(安装和使用防火墙、VPN等);
检测(Detection,D):检测是对上述二者的补充,通过检测发现系统或网络的异常情况,发现可能的攻击行为;
响应(Response,R):发现异常或攻击行为后系统自动采取的行动,目前的入侵响应措施比较单一,主要是关闭端口,中断连接,中断服务等;
4)P2DR2模型:策略、防护、检测、响应、恢复(Restore);
5)P2OTPDR2模型:策略、防护、操作(Operation)、技术(Technology)、人(People)、检测、响应、恢复;
6)MAP2DR2模型:管理(Management)、审计(Audit)、策略、防护、检测、响应、恢复;
7)纵深防御战略(Defense in Depth):人、技术、操作
二、网络空间安全主要特点和关键技术问题
网络空间安全的发展历程,发展历程分为通信安全、计算机安全、信息安全、信息安全保障、网络空间安全等5个发展时期。
从网络空间安全发展历程看,网络空间安全学科具备交叉性、对抗性、时效性、实践性、系统性和开放性等6 大特点,当前网络空间安全技术呈现出的零化、弹性化、匿名化、量子化和智能化等5 大特征。
密码学与安全基础是网络空间安全学科发展的底座,为网络空间安全学科其他研究方向提供理论遵循和方法指导。
网络与通信安全支撑了互联网、移动互联网、物联网、工业互联网等的蓬勃发展,网络具有典型的分层结构,标准的有ISO模型、TCP/IP模型,针对各种形态的网络、不同层次的安全威胁,形成了一系列安全机制和安全解决方案。
软件与系统安全作为网络空间安全学科的关键组成部分,包括恶意代码防范、软件漏洞治理、系统安全机制等内容,软件与系统的安全伴随着万物数字化浪潮,已经成为个人、组织和整个社会安全与稳定的重要保障。
数据与应用安全涉及数据安全、人工智能安全、物联网安全、区块链安全、内容安全等热点专题,为智慧城市、电子商务、社交网络、智能家居、网络教育等数字化技术的发展和应用提供了安全解决方案。
物理空间全链路信息安全和网络空间安全同步交叉融合,衍生更多安全场景。
三、网络空间安全学科发展思路与发展方向
未来重点需要关注的技术问题,包括新兴场景下的安全基础理论构建与安全模型建模、量子安全模型与抗量子密码、适用于新型信息技术应用需求的安全基础设施构建理论与技术、软件供应链安全模型等、富有弹性的网络空间安全保障体系、抗量子密码、大型语言模型安全、全密态多方联合计算、卫星互联网安全、工业控制系统安全、软件供应链安全、关键信息基础设施安全。
3.1 安全基础理论与模型构建
-
新兴场景下的安全基础理论
针对云计算、物联网、卫星互联网等新兴场景,研究动态威胁建模与风险评估理论,构建适应复杂网络环境的安全框架
具体问题:-
异构网络环境中的安全边界动态定义与验证
-
多维度威胁情报融合与态势感知模型优化
-
零信任架构下的可信计算基础理论突破
-
-
量子安全模型与抗量子密码
应对量子计算对传统加密算法的威胁,开发基于格的加密算法、同态加密协议,以及量子密钥分发(QKD)技术的工程化实现路径
3.2 网络与通信安全
-
新型网络架构安全防护
聚焦5G、工业互联网、卫星通信等领域的协议漏洞治理,研究分层防御机制与攻击溯源技术。
关键技术问题:-
网络切片隔离性验证与跨域攻击防御
-
工业控制协议(如Modbus、OPC UA)的实时入侵检测
-
低轨卫星星座的通信抗干扰与密钥动态更新
-
-
去中心化安全架构
探索区块链在数据完整性保护中的应用,研究分布式账本与智能合约的漏洞修复机制。
3.3 软件与系统安全
-
软件供应链安全
针对开源组件、第三方库的漏洞风险,构建全生命周期安全评估体系,包括代码签名验证、依赖关系动态分析等。
重点问题:-
开源生态的恶意代码植入检测
-
软件物料清单(SBOM)自动化生成与审计
-
持续集成/持续交付(CI/CD)管道的安全加固
-
-
系统可信执行环境
基于可信计算技术(如TEE),研究硬件级安全隔离、固件防篡改机制,解决冯·诺依曼体系结构的安全缺陷。
3.4 数据与应用安全
-
数据隐私增强技术
发展差分隐私、联邦学习与全密态多方联合计算技术,解决医疗、金融等领域的敏感数据共享难题。
突破方向:-
大规模数据脱敏的效用与安全平衡
-
跨域数据流动的合规性验证算法
-
-
人工智能安全
研究对抗样本防御、模型窃取防护等技术,开发面向大语言模型(LLM)的内容安全过滤与深度伪造检测方案。
3.5 关键信息基础设施安全
-
弹性防御体系构建
针对能源、交通等关键领域,设计基于冗余备份和动态重构的抗毁能力评估模型,实现攻击链快速阻断。
核心问题:-
工控系统的实时异常行为检测
-
跨域协同防御策略优化
-
灾备恢复的自动化决策支持
-
-
卫星互联网安全
研究星地一体化网络安全协议,解决卫星载荷资源受限条件下的轻量级加密与认证问题。
其他交叉领域重点问题
-
认知域安全:虚假信息传播的AI识别算法与网络舆情引导模型
-
硬件安全:芯片侧信道攻击防御与物理不可克隆函数(PUF)设计
-
法律与标准:跨境数据流动的合规性验证技术与国际标准对接机制。
3.6 空间安全
3.6.1 无线振动感知对网络空间安全的影响
无线振动感知是指利用无线电波或声波等无线信号,对环境中的振动信号进行检测和识别的技术。无线振动感知具有非接触、无需额外硬件、可穿透障碍物等优点,可以实现对人体、机器、物体等的运动状态、健康状况、位置信息等的感知。无线振动感知在工业、医疗、军事、智能家居等领域有着广泛的应用,如振动能量采集、振动控制、振动诊断、振动通信、振动定位等。
无线振动感知的优势和挑战
无线振动感知技术相比传统的振动感知技术,具有以下几个优势:
-
非接触:无线振动感知技术不需要与振动源或振动对象接触或靠近,可以在一定的距离内,通过无线信号的传播,实现对振动信号的感知,避免传感器的损耗和干扰,提高感知的安全性和灵活性。
-
无需额外硬件:无线振动感知技术不需要额外的硬件设备,可以利用现有的无线设备,如手机、电脑、路由器、扬声器等,实现无线信号的发送和接收,降低感知的成本和复杂度。
-
可穿透障碍物:无线振动感知技术可以利用无线电波或声波等无线信号,穿透一些障碍物,如墙壁、门窗、家具等,实现对隐蔽或难以到达的振动信号的感知,扩大感知的范围和场景。
无线振动感知技术也面临着以下几个挑战:
-
信号的衰减和干扰:无线振动感知技术受到无线信号的传播特性的限制,无线信号在传播过程中会遭受衰减和干扰,导致信号的质量和可靠性下降,影响感知的精度和效果。因此,需要采取一些措施,如选择合适的频率、功率、编码、调制等,以提高无线信号的抗衰减和抗干扰能力。
-
信号的处理和分析:无线振动感知技术需要对无线信号进行复杂的处理和分析,以提取振动信号的特征和信息,这需要高效的算法和强大的计算能力。因此,需要采取措施,如优化信号的采样、压缩、滤波、增强等,以降低信号的数据量和噪声,提高信号的质量和可用性。
-
信号的安全和隐私:无线振动感知技术可能会泄露一些敏感的信息,如人体的运动状态、健康状况、位置信息等,这可能会威胁到用户的安全和隐私。因此,需要采取措施,如加密信号的数据、控制信号的权限、保护信号的身份等,有效保护信号的安全和隐私。
无线振动感知作为新兴的物理信息感知技术,正深刻影响网络空间安全领域。其通过非接触式采集环境振动信号,结合无线通信技术,构建了物理世界与数字空间的动态连接,既为安全防护提供新手段,也带来新的攻击面。
增强身份认证与隐私保护
-
生物特征认证革新
无线振动感知通过提取人体呼吸、心跳等振动特征,形成独特的生物标识符,可替代传统密码或人脸识别技术。例如,利用WiFi信号捕捉胸部振动特征实现身份认证,避免直接采集敏感图像或语音数据,降低隐私泄露风险。这种基于振动特征的认证方式具有抗重放攻击和隐私友好特性,尤其适用于金融等高安全需求场景。 -
物理行为防伪
结合毫米波雷达技术,可检测喉部振动等细微动作,识别用户真实生理活动(如说话时的声带振动),有效防御语音合成攻击或伪造生物特征的行为,提升认证系统的可靠性。
关键基础设施安全监测
-
工业设备健康诊断
无线振动传感器(如压电式、电容式传感器)可实时监测电机、轴承等设备的振动频谱,通过频域分析(FFT、小波变换)识别异常振动模式,提前预警机械故障。例如,在电力系统中,通过振动烈度分析(GB/T 6075.3标准)判断设备运行状态,避免因设备损坏导致的生产中断或数据泄露风险。 -
极端环境适应性突破
面向极寒、高温等恶劣环境,自供能无线振动传感网络通过压电-热电复合能量收集装置(-40℃下输出≥10mW)和低温自适应协议(500m@-50℃通信距离),实现对高寒地区风电设备、油气管道的持续监测,填补传统有线监测的盲区,提升关键基础设施的抗毁能力。
数据安全与传输风险
-
加密传输与抗干扰优化
无线振动监测系统采用AES-128加密、动态密钥交换,结合跳频、扩频技术抵抗电磁干扰,确保振动数据在传输过程中免受中间人攻击。例如,ZigBee协议在工业场景中通过低功耗设计实现数据安全传输,而5G/6G技术则通过大连接特性支持海量传感器节点的实时加密通信。 -
边缘计算与隐私保护
通过联邦学习、差分隐私技术,在传感器节点端进行振动数据预处理(如小波压缩),仅上传脱敏特征值至云端,减少原始数据暴露风险。例如,医疗场景中呼吸振动数据的本地分析可避免患者隐私外泄。
新型攻击面与防御挑战
-
传感器节点脆弱性
无线振动传感器若未采用安全启动机制或固件签名验证,可能被植入恶意代码,篡改监测数据或发起DDoS攻击。例如,攻击者可通过伪造振动信号干扰工业控制系统,导致误判设备状态。 -
侧信道攻击风险
振动信号可能泄露设备运行信息(如服务器硬盘振动频率),攻击者利用此特征可推断数据读写模式,进而窃取敏感信息。需结合抗侧信道攻击的硬件设计(如PUF技术)进行防护。
安全生态协同
-
跨域威胁情报共享
基于振动感知的异常事件(如设备异常振动、人体入侵行为)可通过物联网平台与网络安全系统联动,形成“物理-网络”协同防御。例如,工业振动异常数据与网络流量日志结合分析,可快速识别APT攻击链。 -
标准与合规性建设
需制定无线振动感知设备的安全标准(如数据加密强度、抗干扰指标),并纳入等保2.0体系。例如,针对医疗振动监测设备,需满足《个人信息保护法》的匿名化处理要求。
无线振动感知技术通过物理信号与网络安全的深度融合,推动了身份认证、基础设施防护等领域的革新,但也需警惕其引入的新攻击面。未来需重点关注以下方向:
-
量子安全加密:研发抗量子攻击的振动特征加密算法,应对量子计算威胁;
-
AI驱动的异常检测:结合CNN、MUSIC算法实现振动信号的智能分析;
-
零信任架构集成:将振动特征作为动态身份验证因子,增强系统可信度。
通过技术创新与安全治理的协同,无线振动感知可成为网络空间安全的战略支撑技术,服务于智能制造、智慧城市等国家重大需求。
3.6.2 二维平面避让网络和三维平面避让网络
二维平面避让网络与空间避让网络是两种不同维度的环境避障技术体系,其核心差异在于处理场景的复杂性和技术实现维度。以下是两者的对比分析及技术要点:
二维平面避让网络
1. 定义与应用场景
二维平面避让网络主要针对无人机、移动机器人等设备在平面环境中的避障需求,通过二维地图建模和路径规划算法实现障碍物规避。典型场景包括无人机低空飞行、仓储机器人平面导航等。
2. 核心技术
-
环境建模:采用栅格地图或拓扑网络对平面环境进行离散化表示,每个单元格标记障碍物状态。
-
路径规划算法:
-
人工势场法:模拟引力(目标点)与斥力(障碍物)的合力引导路径生成。
-
A算法*:基于启发式搜索的最短路径优化,适用于静态环境。
-
动态窗口法(DWA):实时调整速度和方向以应对动态障碍物。
-
速度障碍模型:通过相对速度矢量和障碍锥判定威胁,结合航路权限规则实现分布式避碰。
-
-
优化策略:如二进制退避算法减少多站点传输冲突,通过随机等待时间分配提高避让效率。
3. 典型案例
-
无人机在二维平面内通过速度障碍锥模型判断威胁,结合航路优先级实现多机协同避障。
-
仓储机器人基于栅格地图和A*算法规划无碰撞路径,动态窗口法处理临时障碍物。
空间避让网络
1. 定义与应用场景
空间避让网络面向三维环境中的避障需求,涉及建筑管线综合、无人机三维飞行、复杂工业场景等,需处理高度、转向限制及多层结构交互问题。
2. 核心技术
-
三维建模:采用BIM(建筑信息模型)或三维点云技术构建空间拓扑结构,集成管线、设备等实体信息。
-
避让规则:
-
垂直排列原则:热介质管道在上、液体管道在下,金属管道优先于非金属管道。
-
管道间距控制:电气桥架与水管间距不小于100mm,阀门并列安装时外壁间距≥200mm。
-
-
动态避障算法:
-
速度障碍圆弧法:结合三维速度矢量和障碍物膨化模型,预测潜在碰撞风险。
-
多传感器融合:集成雷达、视觉传感器及ADS-B(广播式自动相关监视系统)实现全向感知。
-
-
协同控制:在机房、走廊等密集区域,通过联合支架设计和空间布局优化减少交叉冲突。
3. 典型案例
-
建筑机电工程中,通过BIM技术综合协调管道垂直排列和间距,避免管线交叉冲突。
-
无人机在三维空域中结合TCAS(空中交通告警与防撞系统)和视觉传感器实现动态避障。
三、核心差异对比
维度 | 二维平面避让网络 | 空间避让网络 |
---|---|---|
环境复杂度 | 平面静态/动态障碍物 | 三维多层结构、动态多维度威胁 |
建模方式 | 栅格地图、拓扑网络 | BIM模型、三维点云、图结构网络 |
避让规则 | 速度障碍锥、路径优先级 | 垂直排列原则、管道间距规范 |
算法特点 | 侧重路径优化与冲突概率控制 | 多传感器融合、动态轨迹预测与协同控制 |
应用领域 | 无人机平面导航、仓储机器人 | 建筑机电工程、无人机三维飞行、空管系统 |
发展趋势
-
二维网络:向动态多目标协同避障发展,结合边缘计算提升实时性。
-
空间网络:强化AI驱动的自主决策能力,例如深度学习预测复杂环境下的潜在威胁。
通过结合具体场景需求选择网络模型,可显著提升避障系统的安全性与效率。如需深入技术细节,可参考相关文献中的MATLAB代码示例或BIM管线综合规则。
四、网络空间安全架构师
4.1 网络体系化知识
4.2 系统架构师需要掌握的技能